本文整理汇总了Python中apgl.graph.DictGraph.DictGraph.neighbours方法的典型用法代码示例。如果您正苦于以下问题:Python DictGraph.neighbours方法的具体用法?Python DictGraph.neighbours怎么用?Python DictGraph.neighbours使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类apgl.graph.DictGraph.DictGraph
的用法示例。
在下文中一共展示了DictGraph.neighbours方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testGetNeighbours
# 需要导入模块: from apgl.graph.DictGraph import DictGraph [as 别名]
# 或者: from apgl.graph.DictGraph.DictGraph import neighbours [as 别名]
def testGetNeighbours(self):
dictGraph = DictGraph(True)
dictGraph.addEdge(1, 2, 12)
dictGraph.addEdge(1, 3, 18)
dictGraph.addEdge(1, 4, 1)
dictGraph.addEdge(3, 4, 1)
dictGraph.addEdge(2, 2, 1)
dictGraph.setVertex(5, 12)
self.assertEquals(dictGraph.neighbours(1), [2, 3, 4])
self.assertEquals(dictGraph.neighbours(3), [1, 4])
self.assertEquals(dictGraph.neighbours(2), [1, 2])
self.assertEquals(dictGraph.neighbours(5), [])
#Directed graphs
dictGraph = DictGraph(False)
dictGraph.addEdge(1, 2, 12)
dictGraph.addEdge(1, 3, 18)
dictGraph.addEdge(1, 4, 1)
dictGraph.addEdge(3, 4, 1)
dictGraph.addEdge(2, 2, 1)
dictGraph.setVertex(5, 12)
self.assertEquals(dictGraph.neighbours(1), [2,3,4])
self.assertEquals(dictGraph.neighbours(3), [4])
self.assertEquals(dictGraph.neighbours(2), [2])
self.assertEquals(dictGraph.neighbours(5), [])
示例2: testNeighbourOf
# 需要导入模块: from apgl.graph.DictGraph import DictGraph [as 别名]
# 或者: from apgl.graph.DictGraph.DictGraph import neighbours [as 别名]
def testNeighbourOf(self):
graph = DictGraph(True)
graph.addEdge(0, 1)
graph.addEdge(0, 2)
graph.addEdge(0, 3)
graph.addEdge(1, 2)
graph.addEdge(2, 3)
for i in range(4):
self.assertEquals(graph.neighbours(i), graph.neighbourOf(i))
#Now test directed graph
graph = DictGraph(False)
graph.addEdge(0, 1)
graph.addEdge(0, 2)
graph.addEdge(0, 3)
graph.addEdge(1, 2)
graph.addEdge(2, 3)
self.assertEquals(graph.neighbourOf(0), [])
self.assertEquals(graph.neighbourOf(1), [0])
self.assertEquals(graph.neighbourOf(2), [0,1])
self.assertEquals(graph.neighbourOf(3), [0, 2])
示例3: __init__
# 需要导入模块: from apgl.graph.DictGraph import DictGraph [as 别名]
# 或者: from apgl.graph.DictGraph.DictGraph import neighbours [as 别名]
def __init__(self, minGraphSize=500, maxGraphSize=None, dayStep=30):
dataDir = PathDefaults.getDataDir() + "cluster/"
edgesFilename = dataDir + "Cit-HepTh.txt"
dateFilename = dataDir + "Cit-HepTh-dates.txt"
#Note the IDs are integers but can start with zero so we prefix "1" to each ID
edges = []
file = open(edgesFilename, 'r')
file.readline()
file.readline()
file.readline()
file.readline()
for line in file:
(vertex1, sep, vertex2) = line.partition("\t")
vertex1 = vertex1.strip()
vertex2 = vertex2.strip()
edges.append([vertex1, vertex2])
#if vertex1 == vertex2:
# print(vertex1)
file.close()
logging.info("Loaded edge file " + str(edgesFilename) + " with " + str(len(edges)) + " edges")
#Keep an edge graph
graph = DictGraph(False)
graph.addEdges(edges)
logging.info("Created directed citation graph with " + str(graph.getNumEdges()) + " edges and " + str(graph.getNumVertices()) + " vertices")
#Read in the dates articles appear in a dict which used the year and month
#as the key and the value is a list of vertex ids. For each month we include
#all papers uploaded that month and those directed cited by those uploads.
startDate = datetime.date(1990, 1, 1)
file = open(dateFilename, 'r')
file.readline()
numLines = 0
subgraphIds = []
for line in file:
(id, sep, date) = line.partition("\t")
id = id.strip()
date = date.strip()
inputDate = datetime.datetime.strptime(date.strip(), "%Y-%m-%d")
inputDate = inputDate.date()
if graph.vertexExists(id):
tDelta = inputDate - startDate
graph.vertices[id] = tDelta.days
subgraphIds.append(id)
#If a paper cites another, it must have been written before
#the citing paper - enforce this rule.
for neighbour in graph.neighbours(id):
if graph.getVertex(neighbour) == None:
graph.setVertex(neighbour, tDelta.days)
subgraphIds.append(neighbour)
elif tDelta.days < graph.getVertex(neighbour):
graph.setVertex(neighbour, tDelta.days)
numLines += 1
file.close()
subgraphIds = set(subgraphIds)
graph = graph.subgraph(list(subgraphIds))
logging.debug(graph)
logging.info("Loaded date file " + str(dateFilename) + " with " + str(len(subgraphIds)) + " dates and " + str(numLines) + " lines")
W = graph.getSparseWeightMatrix()
W = W + W.T
vList = VertexList(W.shape[0], 1)
vList.setVertices(numpy.array([graph.getVertices(graph.getAllVertexIds())]).T)
#Note: we have 16 self edges and some two-way citations so this graph has fewer edges than the directed one
self.graph = SparseGraph(vList, W=W)
logging.debug(self.graph)
#Now pick the max component
components = self.graph.findConnectedComponents()
self.graph = self.graph.subgraph(components[0])
logging.debug("Largest component graph: " + str(self.graph))
self.minGraphSize = minGraphSize
self.maxGraphSize = maxGraphSize
self.dayStep = dayStep
示例4: testGetIterator
# 需要导入模块: from apgl.graph.DictGraph import DictGraph [as 别名]
# 或者: from apgl.graph.DictGraph.DictGraph import neighbours [as 别名]
def testGetIterator(self):
generator = CitationIterGenerator()
iterator = generator.getIterator()
lastW = iterator.next()
for W in iterator:
self.assertTrue((W-W.T).getnnz() == 0)
self.assertTrue((lastW - W[0:lastW.shape[0], 0:lastW.shape[0]]).getnnz() ==0 )
lastW = W
numVertices = W.shape[0]
#Now compute the vertexIds manually:
dataDir = PathDefaults.getDataDir() + "cluster/"
edgesFilename = dataDir + "Cit-HepTh.txt"
dateFilename = dataDir + "Cit-HepTh-dates.txt"
#We can't load in numbers using numpy since some may start with zero
edges = []
file = open(edgesFilename, 'r')
file.readline()
file.readline()
file.readline()
file.readline()
for line in file:
(vertex1, sep, vertex2) = line.partition("\t")
vertex1 = vertex1.strip()
vertex2 = vertex2.strip()
edges.append([int("1" + vertex1), int("1" + vertex2)])
edges = numpy.array(edges, numpy.int)
#Check file read correctly
self.assertTrue((edges[0, :] == numpy.array([11001, 19304045])).all())
self.assertTrue((edges[1, :] == numpy.array([11001, 19308122])).all())
self.assertTrue((edges[9, :] == numpy.array([11001, 19503124])).all())
vertexIds1 = numpy.unique(edges)
logging.info("Number of graph vertices: " + str(vertexIds1.shape[0]))
file = open(dateFilename, 'r')
file.readline()
vertexIds2 = []
for line in file:
(id, sep, date) = line.partition("\t")
id = id.strip()
date = date.strip()
vertexIds2.append(int("1" + id))
#Check file read correctly
vertexIds2 = numpy.array(vertexIds2, numpy.int)
self.assertTrue((vertexIds2[0:10] == numpy.array([19203201, 19203202, 19203203, 19203204, 19203205, 19203206, 19203207, 19203208, 19203209, 19203210], numpy.int)).all())
vertexIds2 = numpy.unique(numpy.array(vertexIds2, numpy.int))
graph = DictGraph(False)
graph.addEdges(edges)
#Find the set of vertices with known citation
vertices = []
vertexId2Set = set(vertexIds2.tolist())
for i in graph.getAllVertexIds():
Util.printIteration(i, 50000, edges.shape[0])
if i in vertexId2Set:
vertices.append(i)
vertices.extend(graph.neighbours(i))
logging.debug("Number of final vertices: " + str(numVertices))
numVertices2 = numpy.unique(numpy.array(vertices)).shape[0]
self.assertEquals(numVertices, numVertices2)
#Now compare the weight matrices using the undirected graph
#Note the order of vertices is different from the iterator
graph = DictGraph()
graph.addEdges(edges)
subgraph = graph.subgraph(numpy.unique(numpy.array(vertices)))
W2 = subgraph.getSparseWeightMatrix()
self.assertEquals(W.getnnz(), W2.getnnz())
示例5: DatedPurchasesGraphListIterator
# 需要导入模块: from apgl.graph.DictGraph import DictGraph [as 别名]
# 或者: from apgl.graph.DictGraph.DictGraph import neighbours [as 别名]
class DatedPurchasesGraphListIterator(object):
def __init__(self, purchasesByWeek, nb_purchases_per_it=None):
"""
The background graph is a bi-partite graph of purchases. Purchases are
grouped by date (week by week), and we consider the graph of purchases
between first week and $i$-th week.
The returned graph considers only users and counts the number of common
purchases between two users.
Purchases are given in a list of [user, prod, week, year] with increasing
date.
nb_purchases_per_it is the maximum number of purchases to put in each
week (if there is more, randomly split the week). None corresponds to
no-limit case.
"""
# args
self.group_by_iterator = DatedPurchasesGroupByIterator(purchasesByWeek, nb_purchases_per_it)
# init variables
self.dictUser = MyDictionary()
self.dictProd = MyDictionary()
for user, prod, week, year in purchasesByWeek:
self.dictUser.index(user)
self.dictProd.index(prod)
self.backgroundGraph = DictGraph(False) # directed
self.W = scipy.sparse.csr_matrix((len(self.dictUser), len(self.dictUser)), dtype='int16')
self.usefullEdges = numpy.array([])
def __iter__(self):
return self
def __next__(self):
# next group of purchases (StopIteration is raised here)
purchases_sublist = next(self.group_by_iterator)
#logging.debug(" nb purchases: " + str(len(purchases_sublist)))
# to check that the group really induces new edges
W_has_changed = False
# update graphs adding current-week purchases
for user, prod, week, year in purchases_sublist:
# update only if this purchase is seen for the first time
try:
newEdge = not self.backgroundGraph.getEdge(prod, user)
except ValueError:
newEdge = True
if newEdge:
self.backgroundGraph.addEdge(prod, user)
newCommonPurchases = self.backgroundGraph.neighbours(prod)
# print prod, newCommonPurchases
for neighbour in filter(lambda neighbour: neighbour != user, newCommonPurchases):
W_has_changed = True
self.W[neighbour, user] += 1
self.W[user, neighbour] += 1
# the returned graph will be restricted to usefull edges
currentUsefullEdges = numpy.array(self.W.sum(1)).ravel().nonzero()[0]
newUsefullEdges = numpy.setdiff1d(currentUsefullEdges, self.usefullEdges)
self.usefullEdges = numpy.r_[self.usefullEdges, newUsefullEdges]
if W_has_changed:
return self.W[self.usefullEdges,:][:,self.usefullEdges]
else:
return next(self)
next = __next__