本文整理汇总了Python中apache_beam.metrics.execution.MetricsContainer.to_runner_api方法的典型用法代码示例。如果您正苦于以下问题:Python MetricsContainer.to_runner_api方法的具体用法?Python MetricsContainer.to_runner_api怎么用?Python MetricsContainer.to_runner_api使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类apache_beam.metrics.execution.MetricsContainer
的用法示例。
在下文中一共展示了MetricsContainer.to_runner_api方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Operation
# 需要导入模块: from apache_beam.metrics.execution import MetricsContainer [as 别名]
# 或者: from apache_beam.metrics.execution.MetricsContainer import to_runner_api [as 别名]
class Operation(object):
"""An operation representing the live version of a work item specification.
An operation can have one or more outputs and for each output it can have
one or more receiver operations that will take that as input.
"""
def __init__(self, operation_name, spec, counter_factory, state_sampler):
"""Initializes a worker operation instance.
Args:
operation_name: The system name assigned by the runner for this
operation.
spec: A operation_specs.Worker* instance.
counter_factory: The CounterFactory to use for our counters.
state_sampler: The StateSampler for the current operation.
"""
self.operation_name = operation_name
self.spec = spec
self.counter_factory = counter_factory
self.consumers = collections.defaultdict(list)
# These are overwritten in the legacy harness.
self.step_name = operation_name
self.metrics_container = MetricsContainer(self.step_name)
self.scoped_metrics_container = ScopedMetricsContainer(
self.metrics_container)
self.state_sampler = state_sampler
self.scoped_start_state = self.state_sampler.scoped_state(
self.operation_name, 'start')
self.scoped_process_state = self.state_sampler.scoped_state(
self.operation_name, 'process')
self.scoped_finish_state = self.state_sampler.scoped_state(
self.operation_name, 'finish')
# TODO(ccy): the '-abort' state can be added when the abort is supported in
# Operations.
self.receivers = []
def start(self):
"""Start operation."""
self.debug_logging_enabled = logging.getLogger().isEnabledFor(
logging.DEBUG)
# Everything except WorkerSideInputSource, which is not a
# top-level operation, should have output_coders
if getattr(self.spec, 'output_coders', None):
self.receivers = [ConsumerSet(self.counter_factory, self.step_name,
i, self.consumers[i], coder)
for i, coder in enumerate(self.spec.output_coders)]
def finish(self):
"""Finish operation."""
pass
def process(self, o):
"""Process element in operation."""
pass
def output(self, windowed_value, output_index=0):
cython.cast(Receiver, self.receivers[output_index]).receive(windowed_value)
def add_receiver(self, operation, output_index=0):
"""Adds a receiver operation for the specified output."""
self.consumers[output_index].append(operation)
def progress_metrics(self):
return beam_fn_api_pb2.Metrics.PTransform(
processed_elements=beam_fn_api_pb2.Metrics.PTransform.ProcessedElements(
measured=beam_fn_api_pb2.Metrics.PTransform.Measured(
total_time_spent=(
self.scoped_start_state.sampled_seconds()
+ self.scoped_process_state.sampled_seconds()
+ self.scoped_finish_state.sampled_seconds()),
# Multi-output operations should override this.
output_element_counts=(
# If there is exactly one output, we can unambiguously
# fix its name later, which we do.
# TODO(robertwb): Plumb the actual name here.
{'ONLY_OUTPUT': self.receivers[0].opcounter
.element_counter.value()}
if len(self.receivers) == 1
else None))),
user=self.metrics_container.to_runner_api())
def __str__(self):
"""Generates a useful string for this object.
Compactly displays interesting fields. In particular, pickled
fields are not displayed. Note that we collapse the fields of the
contained Worker* object into this object, since there is a 1-1
mapping between Operation and operation_specs.Worker*.
Returns:
Compact string representing this object.
"""
return self.str_internal()
def str_internal(self, is_recursive=False):
"""Internal helper for __str__ that supports recursion.
#.........这里部分代码省略.........
示例2: Operation
# 需要导入模块: from apache_beam.metrics.execution import MetricsContainer [as 别名]
# 或者: from apache_beam.metrics.execution.MetricsContainer import to_runner_api [as 别名]
#.........这里部分代码省略.........
return None
def finish(self):
"""Finish operation."""
pass
def reset(self):
self.metrics_container.reset()
def output(self, windowed_value, output_index=0):
cython.cast(Receiver, self.receivers[output_index]).receive(windowed_value)
def add_receiver(self, operation, output_index=0):
"""Adds a receiver operation for the specified output."""
self.consumers[output_index].append(operation)
def progress_metrics(self):
return beam_fn_api_pb2.Metrics.PTransform(
processed_elements=beam_fn_api_pb2.Metrics.PTransform.ProcessedElements(
measured=beam_fn_api_pb2.Metrics.PTransform.Measured(
total_time_spent=(
self.scoped_start_state.sampled_seconds()
+ self.scoped_process_state.sampled_seconds()
+ self.scoped_finish_state.sampled_seconds()),
# Multi-output operations should override this.
output_element_counts=(
# If there is exactly one output, we can unambiguously
# fix its name later, which we do.
# TODO(robertwb): Plumb the actual name here.
{'ONLY_OUTPUT': self.receivers[0].opcounter
.element_counter.value()}
if len(self.receivers) == 1
else None))),
user=self.metrics_container.to_runner_api())
def monitoring_infos(self, transform_id):
"""Returns the list of MonitoringInfos collected by this operation."""
all_monitoring_infos = self.execution_time_monitoring_infos(transform_id)
all_monitoring_infos.update(
self.element_count_monitoring_infos(transform_id))
all_monitoring_infos.update(self.user_monitoring_infos(transform_id))
return all_monitoring_infos
def element_count_monitoring_infos(self, transform_id):
"""Returns the element count MonitoringInfo collected by this operation."""
if len(self.receivers) == 1:
# If there is exactly one output, we can unambiguously
# fix its name later, which we do.
# TODO(robertwb): Plumb the actual name here.
mi = monitoring_infos.int64_counter(
monitoring_infos.ELEMENT_COUNT_URN,
self.receivers[0].opcounter.element_counter.value(),
ptransform=transform_id,
tag='ONLY_OUTPUT' if len(self.receivers) == 1 else str(None),
)
return {monitoring_infos.to_key(mi) : mi}
return {}
def user_monitoring_infos(self, transform_id):
"""Returns the user MonitoringInfos collected by this operation."""
return self.metrics_container.to_runner_api_monitoring_infos(transform_id)
def execution_time_monitoring_infos(self, transform_id):
total_time_spent_msecs = (
self.scoped_start_state.sampled_msecs_int()
+ self.scoped_process_state.sampled_msecs_int()