本文整理汇总了Python中analyzer.Analyzer.analyze方法的典型用法代码示例。如果您正苦于以下问题:Python Analyzer.analyze方法的具体用法?Python Analyzer.analyze怎么用?Python Analyzer.analyze使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类analyzer.Analyzer
的用法示例。
在下文中一共展示了Analyzer.analyze方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: analyze
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def analyze(self):
for i, line in enumerate(self.segment):
if i == 0:
self.vicar.name = line
else:
analyzer = Analyzer(line, self.vicar)
analyzer.analyze()
示例2: parse
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def parse(path, f=None):
p = Parser(path=path)
p.parse_file()
a = Analyzer(parser=p)
a.analyze()
j = Packer(analyzer=a)
if f is None:
return j.pack()
else:
j.pack(f=f)
示例3: __trainModel
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def __trainModel(self, verbose=False, trainRatio=.5):
if verbose:
analyzer = Analyzer(self.__model, self.__dataset, trainRatio)
analyzer.start()
if self.__dataset.trainSampleCount > 0:
self.__model.train(self.__dataset.trainSamples, self.__dataset.trainResponses)
if verbose:
analyzer.stop()
analyzer.analyze()
print analyzer
示例4: processFile
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def processFile(path):
try:
p = Parser(path=path)
p.parseFile()
a = Analyzer(parser=p)
a.analyze()
j = Packer(analyzer=a)
return j.pack()
except:
print path
exit(1)
示例5: classification_preprocess_all_datasets
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def classification_preprocess_all_datasets():
"""
Preprocesses all datasets to be ready for classification task.
This will include stemming, word correction, lower-casing, hashtag removal, special char removal.
"""
for i in range(0,len(utils.annotated_datasets)):
tweetlines = utils.get_dataset(utils.annotated_datasets[i])
tweets = []
for line in tweetlines:
if len(line)>1:
tweets.append(tweet.to_tweet(line))
# tweets = lower_case(tweets)
tweets = remove_hastags_and_users(tweets)
tweets = count_emoticons(tweets)
tweets = replace_links(tweets)
tweets = remove_specialchars(tweets)
tweets = correct_words(tweets)
tweets = stem(tweets)
tweets = tokenize(tweets)
tweets = pos_tag(tweets)
tweets = count_exclamations(tweets)
analyzer = Analyzer(utils.annotated_datasets[i], tweets)
stats = analyzer.analyze()
print stats
#store tweets in pickles...
print "Storing pickles..."
utils.store_pickles(tweets, utils.annotated_datasets[i][24:len(utils.annotated_datasets[i])-4])
示例6: __trainModel
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def __trainModel(self, trainRatio=.5, errorsIteration=0, log=None):
if log:
analyzer = Analyzer(self.__model, self.__dataset, trainRatio)
analyzer.start()
self.__model.train(self.__dataset.trainSamples,
self.__dataset.trainResponses)
samples, responses = self.__dataset.testSamples, self.__dataset.testResponses
i = 0
while responses.any() and i < errorsIteration:
samples, responses = self.__injectErrors(samples, responses)
i += 1
self.__dataset.testSamples = samples
self.__dataset.testResponses = responses
if log:
analyzer.stop()
analyzer.analyze()
log(str(analyzer))
示例7: brute
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def brute(ciphertext):
analyzer = Analyzer()
highestText = ""
highestValue = 0
keys = [chr(i) for i in xrange(0, 0x100)]
for key in keys:
message = xor(ciphertext, key)
value = analyzer.analyze(message)
if (value > highestValue):
highestValue = value
highestText = message
print "[Score = %f] %s" % (highestValue, highestText)
示例8: search
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def search():
# validate screen_name
screen_name = request.args.get("screen_name", "")
if not screen_name:
return redirect(url_for("index"))
# get screen_name's tweets
tweets = helpers.get_user_timeline(screen_name, 100)
# Check if tweets array contains None
if tweets is None:
sys.exit("Error: No tweets was returned!")
# Absolute paths to lists
positives = os.path.join(sys.path[0], "positive-words.txt")
negatives = os.path.join(sys.path[0], "negative-words.txt")
# Initialize an Analyze object
analyzer = Analyzer(positives, negatives)
# Initialize sentiment analysis counts for chart values
positive, negative, neutral = 0.0, 0.0, 0.0
# Iterate through tweets
for tweet in tweets:
# Return score analysis for tweet
score = analyzer.analyze(tweet)
# Increment respective sentiment analysis counts
if score > 0.0:
positive += 1
elif score < 0.0:
negative += 1
else:
neutral += 1
# Set sentiment analysis counts to percentages
num_tweets = positive + negative + neutral
positive = positive / num_tweets
negative = negative / num_tweets
neutral = neutral / num_tweets
# generate chart
chart = helpers.chart(positive, negative, neutral)
# render results
return render_template("search.html", chart=chart, screen_name=screen_name)
示例9: re_analyze
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def re_analyze():
"""
Unpickles preprocessed tweets and performs reanalyzis of these, then stores stats.
"""
labels = ["random",'"rosenborg"','"erna solberg"']
data = {}
worddata = {}
for i in xrange(3):
tweets = utils.get_pickles(i)
analyzer = Analyzer(utils.annotated_datasets[i], tweets)
avg_list,words_list= analyzer.analyze()
print avg_list
worddata[labels[i]] = words_list
data[labels[i]] = avg_list
plotting.average_wordclasses(worddata, "averages")
plotting.detailed_average_wordclasses(data, "averages2")
示例10: search
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def search():
# validate screen_name
screen_name = request.args.get("screen_name", "")
if not screen_name:
return redirect(url_for("index"))
# get screen_name's tweets
tweets = helpers.get_user_timeline(screen_name, 100)
# handle get_user_timeline errors
if tweets == None:
return redirect(url_for("index"))
# absolute paths to lists
positives = os.path.join(sys.path[0], "positive-words.txt")
negatives = os.path.join(sys.path[0], "negative-words.txt")
# instantiate analyzer
analyzer = Analyzer(positives, negatives)
# counts for sentiment categories
pos_count, neg_count, neut_count = 0, 0, 0
# score and assign sentiment category to each tweet
for tweet in tweets:
score = analyzer.analyze(tweet)
if score > 0.0:
pos_count += 1
elif score < 0.0:
neg_count += 1
else:
neut_count += 1
whole = pos_count + neg_count + neut_count
positive, negative, neutral = (pos_count / whole), (neg_count / whole), (neut_count / whole)
# generate chart
chart = helpers.chart(positive, negative, neutral)
# render results
return render_template("search.html", chart=chart, screen_name=screen_name)
示例11: search
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def search():
# validate screen_name
screen_name = request.args.get("screen_name", "").lstrip("@")
if not screen_name:
return redirect(url_for("index"))
# absolute paths to lists
positives = os.path.join(sys.path[0], "positive-words.txt")
negatives = os.path.join(sys.path[0], "negative-words.txt")
# instantiate analyzer
analyzer = Analyzer(positives, negatives)
# get screen_name's most recent 100 tweets
tweets = helpers.get_user_timeline(screen_name, 100)
# return to index if screen_name doesn't exist
if tweets == None:
return redirect(url_for("index"))
# create positive, negative and neutral count
positive, negative, neutral = 0, 0, 0
# analyze each tweet & increase corresponding sentimen count
for tweet in tweets:
score = analyzer.analyze(tweet)
if score > 0.0:
positive += 1
elif score < 0.0:
negative += 1
else:
neutral += 1
# generate chart
chart = helpers.chart(positive, negative, neutral)
# render results
return render_template("search.html", chart=chart, screen_name=screen_name)
示例12: do_analyze
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def do_analyze(self, args_str):
parser = self._get_arg_parser()
parser.add_argument("-o", "--output",
metavar="FILE", dest="output",
help="specific output dir or file"),
parser.add_argument("-t", "--threads",
type=int, dest="threads", default=multiprocessing.cpu_count(),
help="threads number to work [default equal cpu count]")
parser.add_argument("--plot-all",
action="store_true", dest="plot_all", default=False,
help="plot all stocks, not only good ones")
parser.add_argument('codes', nargs='*')
options = self._parse_arg(parser, args_str)
if not options:
return
schemes = []
user_options = []
for k, v in self.config['analyzing']['schemes'].items():
schemes.append(v)
user_options.append(v['desc'])
select = util.select(user_options, 'please select a scheme used for analyzing')
config = schemes[select]['config']
logging.info('analyzer config:\n%s' % yaml.dump(config))
if not self.loaded:
self.do_load()
stocks = {}
if len(options.codes):
for code in options.codes:
if code in self.dm.stocks:
stocks[code] = self.dm.stocks[code]
else:
logging.error('unknown stock %s', code)
else:
stocks = self.dm.stocks
if not len(stocks):
logging.error('no stocks found in local database, please run \'load\' command first')
return
analyzer = Analyzer(stocks, self.dm.indexes, config)
logging.info('all %d available stocks will be analyzed' % len(analyzer.stocks))
logging.info('-----------invoking data analyzer module-------------')
analyzer.analyze(threads=options.threads)
logging.info('-------------------analyze done----------------------')
list = []
for result in analyzer.good_stocks:
stock = result.stock
list.append({'code': stock.code, 'name': stock.name, 'price': stock.price,
'pe': stock.pe, 'nmc': stock.nmc / 10000, 'mktcap': stock.mktcap / 10000,
'toavgd5': '%.2f%%' % stock.get_turnover_avg(5),
'toavgd30': '%.2f%%' % stock.get_turnover_avg(30),
'area': stock.area, 'industry': stock.industry
})
df = DataFrame(list)
if df.empty:
logging.info('no good stocks found')
return
logging.info('list of good %d stocks%s:' % (len(analyzer.good_stocks),
options.output and ' and save plots to %s' % options.output or ''))
print(df.to_string(
columns=('code', 'name', 'price', 'pe', 'nmc', 'mktcap', 'toavgd5', 'toavgd30', 'area', 'industry')))
logging.info('global market status: %s' % analyzer.global_status)
if options.output:
logging.info('generating html report...')
os.makedirs(options.output, exist_ok=True)
analyzer.generate_report(options.output, only_plot_good=not options.plot_all)
logging.info('done')
示例13: __init__
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
class CameraProcessor:
def __init__(self, camera, gui):
self.analyzer = Analyzer(gui)
self.cap = cv2.VideoCapture(camera)
self.callibration_state = 0
self.callibration_message = [
"Please click the plus sign with the circle around it",
"Please click the plus sign WITHOUT the circle around it",
"Got it!"
]
self.create_images_dir()
self.gui = gui
gui.subscribe('color_threshold', self)
gui.subscribe('blob_threshold', self)
gui.subscribe('area_threshold', self)
def create_images_dir(self):
try:
os.mkdir("images")
except:
pass
def handle_callibration_click(self, event,x,y,flags,param):
if event == 1:
self.analyzer.set_callibration(self.callibration_state, (x,y))
print("Setting callibration point %d to (%d, %d)" % (self.callibration_state, x, y))
self.callibration_state += 1
print(self.callibration_message[self.callibration_state])
def callibrate(self):
cv2.namedWindow('callibration')
cv2.setMouseCallback('callibration',self.handle_callibration_click)
print(self.callibration_message[self.callibration_state])
while self.callibration_state < 2:
ret, frame = self.cap.read()
resized = cv2.resize(frame, (800,600))
cv2.imshow( "callibration" ,resized)
cv2.waitKey(1)
cv2.destroyWindow("callibration")
def detected_dice(self):
if len(self.analyzer.detected_dice) == 0: return None
return self.analyzer.detected_dice[0]
def save_frame(self):
filename = "images/%s.jpg" % str(uuid.uuid4())
ret, frame = self.cap.read()
print("Writing %s" % filename)
cv2.imwrite(filename, frame)
def process(self):
ret, frame = self.cap.read()
self.process_image(frame)
def process_image(self, frame):
resized = cv2.resize(frame, (800,600))
self.analyzer.analyze(resized, frame)
def set_parameter(self, name, value):
if name == 'color_threshold':
self.analyzer.color_threshold = value
elif name == 'blob_threshold':
self.analyzer.blob_threshold = value
elif name == 'area_threshold':
self.analyzer.set_area_threshold(value * 100)
def report_blobs(self):
self.analyzer.report()
def teardown(self):
self.cap.release()
def run_test(self):
while True:
self.process()
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
if key & 0xFF == ord('r'):
self.report_blobs()
if key & 0xFF == ord('s'):
self.save_frame()
self.teardown()
示例14: Observable
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
from setup import Configuration
cfg=Configuration()
from observables import Observable
cfg.parametersSet['region'] = 'SR'
cfg.parametersSet['observable'] = 'met'
cfg.parametersSet['lumi'] = '10000' # pb^-1
#cfg.parametersSet['observable'] = Observable(variable='ZpT',formula='z_pt',labelX='Z p_{T} [GeV]')
#cfg.parametersSet['selection'] = '{"leading jet":"jets_pt[0]>120"}'
label = str(hash(frozenset(cfg.parametersSet.items())))
from analyzer import Analyzer
analyzer = Analyzer(cfg, label)
analyzer.analyze()
analyzer.format_histograms()
analyzer.draw('pippo')
histograms = analyzer.formatted_histograms
# manage output
output_file = TFile('plots.root' if not cfg.parametersSet.has_key('output_name') else cfg.parametersSet['output_name'],
'recreate')
for h in histograms: histograms[h].Write()
output_file.Close()
output_file = TFile('logs/log.root', 'update')
output_file.mkdir(label)
output_file.cd(label)
for h in histograms: histograms[h].Write()
示例15: analyze
# 需要导入模块: from analyzer import Analyzer [as 别名]
# 或者: from analyzer.Analyzer import analyze [as 别名]
def analyze (self, v1, v2=None):
"""analyze(v1, v2=None)
Calculates EOF principal components.
Sets the following attributes:
'principal_components'
'eigenvectors'
'percent_explained'
"""
g = v1.getGrid()
if g is None:
raise ValueError, "u does not have spatial dimensions."
latw, longw = g.getWeights()
latw = latw / numpy.maximum.reduce(latw)
if self.latweight_choice() == 'none':
latweight = 1.0 + 0.0 * latw
elif self.latweight_choice() == 'area':
latweight = latw
else:
latweight = numpy.sqrt(latw)
mean_choice = self.mean_choice()
nr = self.number_of_components()
lat_axis = v1.getLatitude()
long_axis = v1.getLongitude()
time_axis = v1.getTime()
if time_axis is None:
raise ValueError, "v1 has no time dimension"
nlat = len(lat_axis)
nlong = len(long_axis)
ntime = len(time_axis)
nvar = nlat*nlong
ax1 = v1(order='...x').getAxisList(omit='time')
if v2 is not None:
time_axis_2 = v2.getTime()
if time_axis_2 is None:
raise ValueError, 'v2 has no time dimension'
if not numpy.allclose(time_axis, time_axis_2):
raise ValueError, 'v1 and v2 have incompatible time axes'
nvar = 2 * nvar
ax2 = v2(order='...x').getAxisList(omit='time')
x = numpy.zeros((ntime, nvar), numpy.float)
for ilat in range(nlat):
udata = v1.getSlice(latitude=ilat,
required='time',
order='t...x',
raw=1)
if udata.mask is not numpy.ma.nomask:
raise ValueError, 'eof cannot operate on masked data'
if numpy.ma.rank(udata) != 2:
raise ValueError, 'eof cannot handle extra dimension'
udata = udata.filled()
x[:, ilat*nlong: (ilat+1)*nlong] = \
self.__adjust(udata, ntime, mean_choice) * \
latweight[numpy.newaxis, ilat]
del udata
if v2 is not None:
for ilat in range(nlat):
udata = v1.getSlice(latitude=ilat,
required='time',
order='t...x',
raw=1)
if udata.mask is not numpy.ma.nomask:
raise ValueError, 'eof cannot operate on masked data'
if numpy.ma.rank(udata) != 2:
raise ValueError, 'eof cannot handle extra dimension'
udata = udata.filled()
x[:, nlat*nlong + ilat*nlong: nlat*nlong + (ilat+1)*nlong] = \
self.__adjust(udata[:, ilat, :], ntime, mean_choice) * \
latweight[numpy.newaxis, ilat]
del udata
a = Analyzer ()
a.analyze (x, nr = nr)
# Compute weighted eigenvectors
evs = a.evec
pcs = numpy.matrix(x)*numpy.matrix(evs)
number_of_components = len(a.eval)
result = []
for k in range(number_of_components):
evs1 = numpy.reshape(evs[0:nlong*nlat, k], (nlat, nlong))
evs1 = evs1 / latweight[:, numpy.newaxis]
pc = cdms2.createVariable(evs1, copy=0, axes=ax1,
id=v1.id+'_'+str(k+1),
attributes = v1.attributes)
result.append(pc)
if v2:
evs1 = numpy.reshape(evs[nlong*nlat:2*nlong*nlat, k],
(nlat, nlong))
evs1 = evs1 / latweight[:, numpy.newaxis]
pc = cdms2.createVariable(evs1, copy=0, axes=ax2,
id=v2.id+'_'+str(k+1),
attributes = v2.attributes)
result.append(pc)
self.principal_components = result
#.........这里部分代码省略.........