本文整理汇总了Python中analyticsclient.client.Client.modules方法的典型用法代码示例。如果您正苦于以下问题:Python Client.modules方法的具体用法?Python Client.modules怎么用?Python Client.modules使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类analyticsclient.client.Client
的用法示例。
在下文中一共展示了Client.modules方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_sequential_open_distrib
# 需要导入模块: from analyticsclient.client import Client [as 别名]
# 或者: from analyticsclient.client.Client import modules [as 别名]
def get_sequential_open_distrib(course_id, enrollment):
"""
Returns the number of students that opened each subsection/sequential of the course
`course_id` the course ID for the course interested in
`enrollment` the number of students enrolled in this course.
Outputs a dict mapping the 'module_id' to the number of students that have opened that subsection/sequential.
"""
sequential_open_distrib = {}
non_student_list = get_non_student_list(course_id)
if enrollment <= settings.MAX_ENROLLEES_FOR_METRICS_USING_DB or not settings.ANALYTICS_DATA_URL:
# Aggregate query on studentmodule table for "opening a subsection" data
queryset = models.StudentModule.objects.filter(
course_id__exact=course_id,
module_type__exact='sequential',
).exclude(student_id__in=non_student_list).values('module_state_key').annotate(count_sequential=Count('module_state_key'))
for row in queryset:
module_id = course_id.make_usage_key_from_deprecated_string(row['module_state_key'])
sequential_open_distrib[module_id] = row['count_sequential']
else:
# Retrieve course object down to subsection
course = modulestore().get_course(course_id, depth=2)
# Connect to analytics data client
client = Client(base_url=settings.ANALYTICS_DATA_URL, auth_token=settings.ANALYTICS_DATA_TOKEN)
for section in course.get_children():
for subsection in section.get_children():
module = client.modules(course_id, subsection.location)
try:
sequential_open = module.sequential_open_distribution()
except NotFoundError:
pass
else:
sequential_open_distrib[subsection.location] = sequential_open[0]['count']
return sequential_open_distrib
示例2: get_problem_grade_distribution
# 需要导入模块: from analyticsclient.client import Client [as 别名]
# 或者: from analyticsclient.client.Client import modules [as 别名]
def get_problem_grade_distribution(course_id, enrollment):
"""
Returns the grade distribution per problem for the course
`course_id` the course ID for the course interested in
`enrollment` the number of students enrolled in this course.
Output is 2 dicts:
'prob-grade_distrib' where the key is the problem 'module_id' and the value is a dict with:
'max_grade' - max grade for this problem
'grade_distrib' - array of tuples (`grade`,`count`).
'total_student_count' where the key is problem 'module_id' and the value is number of students
attempting the problem
"""
non_student_list = get_non_student_list(course_id)
prob_grade_distrib = {}
total_student_count = defaultdict(int)
if enrollment <= settings.MAX_ENROLLEES_FOR_METRICS_USING_DB or not settings.ANALYTICS_DATA_URL:
# Aggregate query on studentmodule table for grade data for all problems in course
queryset = models.StudentModule.objects.filter(
course_id__exact=course_id,
grade__isnull=False,
module_type__in=PROB_TYPE_LIST,
).exclude(student_id__in=non_student_list).values('module_state_key', 'grade', 'max_grade').annotate(count_grade=Count('grade'))
# Loop through resultset building data for each problem
for row in queryset:
curr_problem = course_id.make_usage_key_from_deprecated_string(row['module_state_key'])
# Build set of grade distributions for each problem that has student responses
if curr_problem in prob_grade_distrib:
prob_grade_distrib[curr_problem]['grade_distrib'].append((row['grade'], row['count_grade']))
if ((prob_grade_distrib[curr_problem]['max_grade'] != row['max_grade']) and
(prob_grade_distrib[curr_problem]['max_grade'] < row['max_grade'])):
prob_grade_distrib[curr_problem]['max_grade'] = row['max_grade']
else:
prob_grade_distrib[curr_problem] = {
'max_grade': row['max_grade'],
'grade_distrib': [(row['grade'], row['count_grade']), ],
}
# Build set of total students attempting each problem
total_student_count[curr_problem] += row['count_grade']
else:
# Retrieve course object down to problems
course = modulestore().get_course(course_id, depth=4)
# Connect to analytics data client
client = Client(base_url=settings.ANALYTICS_DATA_URL, auth_token=settings.ANALYTICS_DATA_TOKEN)
for section in course.get_children():
for subsection in section.get_children():
for unit in subsection.get_children():
for child in unit.get_children():
if child.location.category not in PROB_TYPE_LIST:
continue
problem_id = child.location
problem = client.modules(course_id, problem_id)
try:
grade_distribution = problem.grade_distribution()
except NotFoundError:
grade_distribution = []
for score in grade_distribution:
total_student_count[problem_id] += score['count']
if problem_id in prob_grade_distrib:
if prob_grade_distrib[problem_id]['max_grade'] < score['max_grade']:
prob_grade_distrib[problem_id]['max_grade'] = score['max_grade']
prob_grade_distrib[problem_id]['grade_distrib'].append((score['grade'], score['count']))
else:
prob_grade_distrib[problem_id] = {
'max_grade': score['max_grade'],
'grade_distrib': [(score['grade'], score['count']), ],
}
return prob_grade_distrib, total_student_count
示例3: get_problem_set_grade_distrib
# 需要导入模块: from analyticsclient.client import Client [as 别名]
# 或者: from analyticsclient.client.Client import modules [as 别名]
def get_problem_set_grade_distrib(course_id, problem_set, enrollment):
"""
Returns the grade distribution for the problems specified in `problem_set`.
`course_id` the course ID for the course interested in
`problem_set` an array of UsageKeys representing problem module_id's.
`enrollment` the number of students enrolled in this course.
Requests from the database the a count of each grade for each problem in the `problem_set`.
Returns a dict, where the key is the problem 'module_id' and the value is a dict with two parts:
'max_grade' - the maximum grade possible for the course
'grade_distrib' - array of tuples (`grade`,`count`) ordered by `grade`
"""
non_student_list = get_non_student_list(course_id)
prob_grade_distrib = {}
if enrollment <= settings.MAX_ENROLLEES_FOR_METRICS_USING_DB or not settings.ANALYTICS_DATA_URL:
# Aggregate query on studentmodule table for grade data for set of problems in course
queryset = models.StudentModule.objects.filter(
course_id__exact=course_id,
grade__isnull=False,
module_type__in=PROB_TYPE_LIST,
module_state_key__in=problem_set,
).exclude(student_id__in=non_student_list).values(
'module_state_key',
'grade',
'max_grade',
).annotate(count_grade=Count('grade')).order_by('module_state_key', 'grade')
# Loop through resultset building data for each problem
for row in queryset:
problem_id = course_id.make_usage_key_from_deprecated_string(row['module_state_key'])
if problem_id not in prob_grade_distrib:
prob_grade_distrib[problem_id] = {
'max_grade': 0,
'grade_distrib': [],
}
curr_grade_distrib = prob_grade_distrib[problem_id]
curr_grade_distrib['grade_distrib'].append((row['grade'], row['count_grade']))
if curr_grade_distrib['max_grade'] < row['max_grade']:
curr_grade_distrib['max_grade'] = row['max_grade']
else:
# Connect to analytics data client
client = Client(base_url=settings.ANALYTICS_DATA_URL, auth_token=settings.ANALYTICS_DATA_TOKEN)
for problem in problem_set:
module = client.modules(course_id, problem)
try:
grade_distribution = module.grade_distribution()
except NotFoundError:
grade_distribution = []
for score in grade_distribution:
if problem in prob_grade_distrib:
if prob_grade_distrib[problem]['max_grade'] < score['max_grade']:
prob_grade_distrib[problem]['max_grade'] = score['max_grade']
prob_grade_distrib[problem]['grade_distrib'].append((score['grade'], score['count']))
else:
prob_grade_distrib[problem] = {
'max_grade': score['max_grade'],
'grade_distrib': [(score['grade'], score['count'])],
}
return prob_grade_distrib