本文整理汇总了Python中allennlp.data.Vocabulary.list_available方法的典型用法代码示例。如果您正苦于以下问题:Python Vocabulary.list_available方法的具体用法?Python Vocabulary.list_available怎么用?Python Vocabulary.list_available使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.data.Vocabulary
的用法示例。
在下文中一共展示了Vocabulary.list_available方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _load
# 需要导入模块: from allennlp.data import Vocabulary [as 别名]
# 或者: from allennlp.data.Vocabulary import list_available [as 别名]
def _load(cls,
config: Params,
serialization_dir: str,
weights_file: str = None,
cuda_device: int = -1) -> 'Model':
"""
Instantiates an already-trained model, based on the experiment
configuration and some optional overrides.
"""
weights_file = weights_file or os.path.join(serialization_dir, _DEFAULT_WEIGHTS)
# Load vocabulary from file
vocab_dir = os.path.join(serialization_dir, 'vocabulary')
# If the config specifies a vocabulary subclass, we need to use it.
vocab_params = config.get("vocabulary", Params({}))
vocab_choice = vocab_params.pop_choice("type", Vocabulary.list_available(), True)
vocab = Vocabulary.by_name(vocab_choice).from_files(vocab_dir)
model_params = config.get('model')
# The experiment config tells us how to _train_ a model, including where to get pre-trained
# embeddings from. We're now _loading_ the model, so those embeddings will already be
# stored in our weights. We don't need any pretrained weight file anymore, and we don't
# want the code to look for it, so we remove it from the parameters here.
remove_pretrained_embedding_params(model_params)
model = Model.from_params(vocab=vocab, params=model_params)
model_state = torch.load(weights_file, map_location=util.device_mapping(cuda_device))
model.load_state_dict(model_state)
# Force model to cpu or gpu, as appropriate, to make sure that the embeddings are
# in sync with the weights
if cuda_device >= 0:
model.cuda(cuda_device)
else:
model.cpu()
return model