本文整理汇总了Python中allennlp.common.params.Params.pop_bool方法的典型用法代码示例。如果您正苦于以下问题:Python Params.pop_bool方法的具体用法?Python Params.pop_bool怎么用?Python Params.pop_bool使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.common.params.Params
的用法示例。
在下文中一共展示了Params.pop_bool方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: from_params
# 需要导入模块: from allennlp.common.params import Params [as 别名]
# 或者: from allennlp.common.params.Params import pop_bool [as 别名]
def from_params(cls, params: Params) -> "EndpointSpanExtractor":
input_dim = params.pop_int("input_dim")
combination = params.pop("combination", "x,y")
num_width_embeddings = params.pop_int("num_width_embeddings", None)
span_width_embedding_dim = params.pop_int("span_width_embedding_dim", None)
bucket_widths = params.pop_bool("bucket_widths", False)
use_exclusive_start_indices = params.pop_bool("use_exclusive_start_indices", False)
params.assert_empty(cls.__name__)
return EndpointSpanExtractor(input_dim=input_dim,
combination=combination,
num_width_embeddings=num_width_embeddings,
span_width_embedding_dim=span_width_embedding_dim,
use_exclusive_start_indices=use_exclusive_start_indices,
bucket_widths=bucket_widths)
示例2: from_params
# 需要导入模块: from allennlp.common.params import Params [as 别名]
# 或者: from allennlp.common.params.Params import pop_bool [as 别名]
def from_params(cls, params: Params) -> "BidirectionalEndpointSpanExtractor":
input_dim = params.pop_int("input_dim")
forward_combination = params.pop("forward_combination", "y-x")
backward_combination = params.pop("backward_combination", "x-y")
num_width_embeddings = params.pop_int("num_width_embeddings", None)
span_width_embedding_dim = params.pop_int("span_width_embedding_dim", None)
bucket_widths = params.pop_bool("bucket_widths", False)
use_sentinels = params.pop_bool("use_sentinels", True)
return BidirectionalEndpointSpanExtractor(input_dim=input_dim,
forward_combination=forward_combination,
backward_combination=backward_combination,
num_width_embeddings=num_width_embeddings,
span_width_embedding_dim=span_width_embedding_dim,
bucket_widths=bucket_widths,
use_sentinels=use_sentinels)
示例3: from_params
# 需要导入模块: from allennlp.common.params import Params [as 别名]
# 或者: from allennlp.common.params.Params import pop_bool [as 别名]
def from_params(cls, params: Params, instances: Iterable['adi.Instance'] = None):
"""
There are two possible ways to build a vocabulary; from a
collection of instances, using :func:`Vocabulary.from_instances`, or
from a pre-saved vocabulary, using :func:`Vocabulary.from_files`.
This method wraps both of these options, allowing their specification
from a ``Params`` object, generated from a JSON configuration file.
Parameters
----------
params: Params, required.
dataset: Dataset, optional.
If ``params`` doesn't contain a ``vocabulary_directory`` key,
the ``Vocabulary`` can be built directly from a ``Dataset``.
Returns
-------
A ``Vocabulary``.
"""
vocabulary_directory = params.pop("directory_path", None)
if not vocabulary_directory and not instances:
raise ConfigurationError("You must provide either a Params object containing a "
"vocab_directory key or a Dataset to build a vocabulary from.")
if vocabulary_directory and instances:
logger.info("Loading Vocab from files instead of dataset.")
if vocabulary_directory:
params.assert_empty("Vocabulary - from files")
return Vocabulary.from_files(vocabulary_directory)
min_count = params.pop("min_count", None)
max_vocab_size = params.pop_int("max_vocab_size", None)
non_padded_namespaces = params.pop("non_padded_namespaces", DEFAULT_NON_PADDED_NAMESPACES)
pretrained_files = params.pop("pretrained_files", {})
only_include_pretrained_words = params.pop_bool("only_include_pretrained_words", False)
params.assert_empty("Vocabulary - from dataset")
return Vocabulary.from_instances(instances=instances,
min_count=min_count,
max_vocab_size=max_vocab_size,
non_padded_namespaces=non_padded_namespaces,
pretrained_files=pretrained_files,
only_include_pretrained_words=only_include_pretrained_words)
示例4: create_kwargs
# 需要导入模块: from allennlp.common.params import Params [as 别名]
# 或者: from allennlp.common.params.Params import pop_bool [as 别名]
def create_kwargs(cls: Type[T], params: Params, **extras) -> Dict[str, Any]:
"""
Given some class, a `Params` object, and potentially other keyword arguments,
create a dict of keyword args suitable for passing to the class's constructor.
The function does this by finding the class's constructor, matching the constructor
arguments to entries in the `params` object, and instantiating values for the parameters
using the type annotation and possibly a from_params method.
Any values that are provided in the `extras` will just be used as is.
For instance, you might provide an existing `Vocabulary` this way.
"""
# Get the signature of the constructor.
signature = inspect.signature(cls.__init__)
kwargs: Dict[str, Any] = {}
# Iterate over all the constructor parameters and their annotations.
for name, param in signature.parameters.items():
# Skip "self". You're not *required* to call the first parameter "self",
# so in theory this logic is fragile, but if you don't call the self parameter
# "self" you kind of deserve what happens.
if name == "self":
continue
# If the annotation is a compound type like typing.Dict[str, int],
# it will have an __origin__ field indicating `typing.Dict`
# and an __args__ field indicating `(str, int)`. We capture both.
annotation = remove_optional(param.annotation)
origin = getattr(annotation, '__origin__', None)
args = getattr(annotation, '__args__', [])
# The parameter is optional if its default value is not the "no default" sentinel.
default = param.default
optional = default != _NO_DEFAULT
# Some constructors expect extra non-parameter items, e.g. vocab: Vocabulary.
# We check the provided `extras` for these and just use them if they exist.
if name in extras:
kwargs[name] = extras[name]
# The next case is when the parameter type is itself constructible from_params.
elif hasattr(annotation, 'from_params'):
if name in params:
# Our params have an entry for this, so we use that.
subparams = params.pop(name)
if takes_arg(annotation.from_params, 'extras'):
# If annotation.params accepts **extras, we need to pass them all along.
# For example, `BasicTextFieldEmbedder.from_params` requires a Vocabulary
# object, but `TextFieldEmbedder.from_params` does not.
subextras = extras
else:
# Otherwise, only supply the ones that are actual args; any additional ones
# will cause a TypeError.
subextras = {k: v for k, v in extras.items() if takes_arg(annotation.from_params, k)}
# In some cases we allow a string instead of a param dict, so
# we need to handle that case separately.
if isinstance(subparams, str):
kwargs[name] = annotation.by_name(subparams)()
else:
print(annotation)
kwargs[name] = annotation.from_params(params=subparams, **subextras)
elif not optional:
# Not optional and not supplied, that's an error!
raise ConfigurationError(f"expected key {name} for {cls.__name__}")
else:
kwargs[name] = default
# If the parameter type is a Python primitive, just pop it off
# using the correct casting pop_xyz operation.
elif annotation == str:
kwargs[name] = (params.pop(name, default)
if optional
else params.pop(name))
elif annotation == int:
kwargs[name] = (params.pop_int(name, default)
if optional
else params.pop_int(name))
elif annotation == bool:
kwargs[name] = (params.pop_bool(name, default)
if optional
else params.pop_bool(name))
elif annotation == float:
kwargs[name] = (params.pop_float(name, default)
if optional
else params.pop_float(name))
# This is special logic for handling types like Dict[str, TokenIndexer], which it creates by
# instantiating each value from_params and returning the resulting dict.
elif origin == Dict and len(args) == 2 and hasattr(args[-1], 'from_params'):
value_cls = annotation.__args__[-1]
value_dict = {}
for key, value_params in params.pop(name, Params({})).items():
value_dict[key] = value_cls.from_params(params=value_params, **extras)
kwargs[name] = value_dict
#.........这里部分代码省略.........