本文整理汇总了Python中aces_ocio.utilities.ColorSpace.allocation_vars方法的典型用法代码示例。如果您正苦于以下问题:Python ColorSpace.allocation_vars方法的具体用法?Python ColorSpace.allocation_vars怎么用?Python ColorSpace.allocation_vars使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类aces_ocio.utilities.ColorSpace
的用法示例。
在下文中一共展示了ColorSpace.allocation_vars方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_ACES
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_ACES():
"""
Object description.
Parameters
----------
parameter : type
Parameter description.
Returns
-------
type
Return value description.
"""
# Defining the reference colorspace.
aces2065_1 = ColorSpace('ACES2065-1')
aces2065_1.description = (
'The Academy Color Encoding System reference color space')
aces2065_1.equality_group = ''
aces2065_1.aliases = ['lin_ap0', 'aces']
aces2065_1.family = 'ACES'
aces2065_1.is_data = False
aces2065_1.allocation_type = ocio.Constants.ALLOCATION_LG2
aces2065_1.allocation_vars = [-8, 5, 0.00390625]
return aces2065_1
示例2: create_transfer_colorspace
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_transfer_colorspace(name='transfer',
transfer_function_name='transfer_function',
transfer_function=lambda x: x,
lut_directory='/tmp',
lut_resolution_1d=1024,
aliases=[]):
"""
Object description.
Parameters
----------
parameter : type
Parameter description.
Returns
-------
type
Return value description.
"""
cs = ColorSpace(name)
cs.description = 'The %s color space' % name
cs.aliases = aliases
cs.equality_group = name
cs.family = 'Utility'
cs.is_data = False
# A linear space needs allocation variables
cs.allocation_type = ocio.Constants.ALLOCATION_UNIFORM
cs.allocation_vars = [0, 1]
# Sample the transfer function
data = array.array('f', '\0' * lut_resolution_1d * 4)
for c in range(lut_resolution_1d):
data[c] = transfer_function(c / (lut_resolution_1d - 1))
# Write the sampled data to a LUT
lut = '%s_to_linear.spi1d' % transfer_function_name
genlut.write_SPI_1d(
os.path.join(lut_directory, lut),
0,
1,
data,
lut_resolution_1d,
1)
# Create the 'to_reference' transforms
cs.to_reference_transforms = []
cs.to_reference_transforms.append({
'type': 'lutFile',
'path': lut,
'interpolation': 'linear',
'direction': 'forward'})
# Create the 'from_reference' transforms
cs.from_reference_transforms = []
return cs
示例3: create_matrix_colorspace
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_matrix_colorspace(name='matrix',
from_reference_values=None,
to_reference_values=None,
aliases=None):
"""
Object description.
Parameters
----------
parameter : type
Parameter description.
Returns
-------
type
Return value description.
"""
if from_reference_values is None:
from_reference_values = []
if to_reference_values is None:
to_reference_values = []
if aliases is None:
aliases = []
cs = ColorSpace(name)
cs.description = 'The %s color space' % name
cs.aliases = aliases
cs.equality_group = name
cs.family = 'Utility'
cs.is_data = False
# A linear space needs allocation variables.
cs.allocation_type = ocio.Constants.ALLOCATION_UNIFORM
cs.allocation_vars = [0, 1]
cs.to_reference_transforms = []
if to_reference_values:
for matrix in to_reference_values:
cs.to_reference_transforms.append({
'type': 'matrix',
'matrix': mat44_from_mat33(matrix),
'direction': 'forward'})
cs.from_reference_transforms = []
if from_reference_values:
for matrix in from_reference_values:
cs.from_reference_transforms.append({
'type': 'matrix',
'matrix': mat44_from_mat33(matrix),
'direction': 'forward'})
return cs
示例4: create_ACEScg
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_ACEScg():
"""
Creates the *ACEScg* colorspace.
Parameters
----------
parameter : type
Parameter description.
Returns
-------
Colorspace
*ACEScg* colorspace.
"""
name = 'ACEScg'
cs = ColorSpace(name)
cs.description = 'The %s color space' % name
cs.aliases = ['acescg', 'lin_ap1']
cs.equality_group = ''
cs.family = 'ACES'
cs.is_data = False
cs.allocation_type = ocio.Constants.ALLOCATION_LG2
cs.allocation_vars = [-8, 5, 0.00390625]
cs.aces_transform_id = 'ACEScsc.ACEScg_to_ACES.a1.0.0'
cs.to_reference_transforms = []
# *AP1* primaries to *AP0* primaries
cs.to_reference_transforms.append({
'type': 'matrix',
'matrix': mat44_from_mat33(ACES_AP1_TO_AP0),
'direction': 'forward'})
cs.from_reference_transforms = []
# *AP1* primaries to *AP0* primaries
cs.from_reference_transforms.append({
'type': 'matrix',
'matrix': mat44_from_mat33(ACES_AP0_TO_AP1),
'direction': 'forward'})
return cs
示例5: create_ACEScg
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_ACEScg(aces_ctl_directory, lut_directory, lut_resolution_1d, cleanup, name="ACEScg"):
"""
Creates the *ACEScg* colorspace.
Parameters
----------
parameter : type
Parameter description.
Returns
-------
Colorspace
*ACEScg* colorspace.
"""
cs = ColorSpace(name)
cs.description = "The %s color space" % name
cs.aliases = ["acescg", "lin_ap1"]
cs.equality_group = ""
cs.family = "ACES"
cs.is_data = False
cs.allocation_type = ocio.Constants.ALLOCATION_LG2
cs.allocation_vars = [-8, 5, 0.00390625]
cs.aces_transform_id = "ACEScsc.ACEScg_to_ACES.a1.0.0"
cs.to_reference_transforms = []
# *AP1* primaries to *AP0* primaries.
cs.to_reference_transforms.append(
{"type": "matrix", "matrix": mat44_from_mat33(ACES_AP1_TO_AP0), "direction": "forward"}
)
cs.from_reference_transforms = []
# *AP1* primaries to *AP0* primaries.
cs.from_reference_transforms.append(
{"type": "matrix", "matrix": mat44_from_mat33(ACES_AP0_TO_AP1), "direction": "forward"}
)
return cs
示例6: create_ACEScg
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_ACEScg(aces_ctl_directory,
lut_directory,
lut_resolution_1d,
cleanup,
name='ACEScg'):
"""
Creates the *ACEScg* colorspace.
Parameters
----------
parameter : type
Parameter description.
Returns
-------
Colorspace
*ACEScg* colorspace.
"""
cs = ColorSpace(name)
cs.description = 'The %s color space' % name
cs.aliases = ["lin_ap1"]
cs.equality_group = ''
cs.family = 'ACES'
cs.is_data = False
cs.allocation_type = ocio.Constants.ALLOCATION_LG2
cs.allocation_vars = [-8, 5, 0.00390625]
cs.to_reference_transforms = []
# *AP1* primaries to *AP0* primaries.
cs.to_reference_transforms.append({
'type': 'matrix',
'matrix': mat44_from_mat33(ACES_AP1_TO_AP0),
'direction': 'forward'})
cs.from_reference_transforms = []
return cs
示例7: create_protune
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_protune(gamut,
transfer_function,
lut_directory,
lut_resolution_1d,
aliases):
"""
Creates colorspace covering the conversion from ProTune to ACES, with various transfer
functions and encoding gamuts covered
Parameters
----------
gamut : str
The name of the encoding gamut to use.
transfer_function : str
The name of the transfer function to use
lut_directory : str or unicode
The directory to use when generating LUTs
lut_resolution_1d : int
The resolution of generated 1D LUTs
aliases : list of str
Aliases for this colorspace
Returns
-------
ColorSpace
A ColorSpace container class referencing the LUTs, matrices and identifying
information for the requested colorspace.
"""
# The gamut should be marked as experimental until matrices are fully
# verified.
name = '%s - %s - Experimental' % (transfer_function, gamut)
if transfer_function == '':
name = 'Linear - %s - Experimental' % gamut
if gamut == '':
name = 'Curve - %s' % transfer_function
cs = ColorSpace(name)
cs.description = name
cs.aliases = aliases
cs.equality_group = ''
cs.family = 'Input/GoPro'
cs.is_data = False
# A linear space needs allocation variables.
if transfer_function == '':
cs.allocation_type = ocio.Constants.ALLOCATION_LG2
cs.allocation_vars = [-8, 5, 0.00390625]
def protune_to_linear(normalized_code_value):
c1 = 113.0
c2 = 1.0
c3 = 112.0
linear = ((pow(c1, normalized_code_value) - c2) / c3)
return linear
cs.to_reference_transforms = []
if transfer_function == 'Protune Flat':
data = array.array('f', '\0' * lut_resolution_1d * 4)
for c in range(lut_resolution_1d):
data[c] = protune_to_linear(float(c) / (lut_resolution_1d - 1))
lut = '%s_to_linear.spi1d' % transfer_function
lut = sanitize(lut)
genlut.write_SPI_1d(
os.path.join(lut_directory, lut),
0,
1,
data,
lut_resolution_1d,
1)
cs.to_reference_transforms.append({
'type': 'lutFile',
'path': lut,
'interpolation': 'linear',
'direction': 'forward'})
if gamut == 'Protune Native':
cs.to_reference_transforms.append({
'type': 'matrix',
'matrix': [0.533448429, 0.32413911, 0.142412421, 0,
-0.050729924, 1.07572006, -0.024990416, 0,
0.071419661, -0.290521962, 1.219102381, 0,
0, 0, 0, 1],
'direction': 'forward'})
cs.from_reference_transforms = []
return cs
示例8: create_red_log_film
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_red_log_film(gamut,
transfer_function,
lut_directory,
lut_resolution_1d,
aliases=None):
"""
Creates colorspace covering the conversion from RED spaces to ACES, with various
transfer functions and encoding gamuts covered
Parameters
----------
gamut : str
The name of the encoding gamut to use.
transfer_function : str
The name of the transfer function to use
lut_directory : str or unicode
The directory to use when generating LUTs
lut_resolution_1d : int
The resolution of generated 1D LUTs
aliases : list of str
Aliases for this colorspace
Returns
-------
ColorSpace
A ColorSpace container class referencing the LUTs, matrices and identifying
information for the requested colorspace.
"""
if aliases is None:
aliases = []
name = '%s - %s' % (transfer_function, gamut)
if transfer_function == '':
name = 'Linear - %s' % gamut
if gamut == '':
name = 'Curve - %s' % transfer_function
cs = ColorSpace(name)
cs.description = name
cs.aliases = aliases
cs.equality_group = ''
cs.family = 'Input/RED'
cs.is_data = False
# A linear space needs allocation variables
if transfer_function == '':
cs.allocation_type = ocio.Constants.ALLOCATION_LG2
cs.allocation_vars = [-8, 5, 0.00390625]
def cineon_to_linear(code_value):
n_gamma = 0.6
black_point = 95
white_point = 685
code_value_to_density = 0.002
black_linear = pow(10, (black_point - white_point) * (
code_value_to_density / n_gamma))
code_linear = pow(10, (code_value - white_point) * (
code_value_to_density / n_gamma))
return (code_linear - black_linear) / (1 - black_linear)
cs.to_reference_transforms = []
if transfer_function == 'REDlogFilm':
data = array.array('f', '\0' * lut_resolution_1d * 4)
for c in range(lut_resolution_1d):
data[c] = cineon_to_linear(1023 * c / (lut_resolution_1d - 1))
lut = 'CineonLog_to_linear.spi1d'
genlut.write_SPI_1d(
os.path.join(lut_directory, lut),
0,
1,
data,
lut_resolution_1d,
1)
cs.to_reference_transforms.append({
'type': 'lutFile',
'path': lut,
'interpolation': 'linear',
'direction': 'forward'})
if gamut == 'DRAGONcolor':
cs.to_reference_transforms.append({
'type': 'matrix',
'matrix': mat44_from_mat33([0.532279, 0.376648, 0.091073,
0.046344, 0.974513, -0.020860,
-0.053976, -0.000320, 1.054267]),
'direction': 'forward'})
elif gamut == 'DRAGONcolor2':
cs.to_reference_transforms.append({
'type': 'matrix',
'matrix': mat44_from_mat33([0.468452, 0.331484, 0.200064,
0.040787, 0.857658, 0.101553,
-0.047504, -0.000282, 1.047756]),
'direction': 'forward'})
elif gamut == 'REDcolor':
#.........这里部分代码省略.........
示例9: create_c_log
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_c_log(gamut,
transfer_function,
lut_directory,
lut_resolution_1d,
aliases):
"""
Creates colorspace covering the conversion from CLog to ACES, with various transfer
functions and encoding gamuts covered
Parameters
----------
gamut : str
The name of the encoding gamut to use.
transfer_function : str
The name of the transfer function to use
lut_directory : str or unicode
The directory to use when generating LUTs
lut_resolution_1d : int
The resolution of generated 1D LUTs
aliases : list of str
Aliases for this colorspace
Returns
-------
ColorSpace
A ColorSpace container class referencing the LUTs, matrices and identifying
information for the requested colorspace.
"""
name = '%s - %s' % (transfer_function, gamut)
if transfer_function == '':
name = 'Linear - Canon %s' % gamut
if gamut == '':
name = 'Curve - %s' % transfer_function
cs = ColorSpace(name)
cs.description = name
cs.aliases = aliases
cs.equality_group = ''
cs.family = 'Input/Canon'
cs.is_data = False
# A linear space needs allocation variables.
if transfer_function == '':
cs.allocation_type = ocio.Constants.ALLOCATION_LG2
cs.allocation_vars = [-8, 5, 0.00390625]
def legal_to_full(code_value):
return (code_value - 64) / (940 - 64)
def c_log_to_linear(code_value):
# log = fullToLegal(c1 * log10(c2*linear + 1) + c3)
# linear = (pow(10, (legalToFul(log) - c3)/c1) - 1)/c2
c1 = 0.529136
c2 = 10.1596
c3 = 0.0730597
linear = (pow(10, (legal_to_full(code_value) - c3) / c1) - 1) / c2
linear *= 0.9
return linear
def c_log2_to_linear(code_value):
# log = fullToLegal(c1 * log10(c2*linear + 1) + c3)
# linear = (pow(10, (legalToFul(log) - c3)/c1) - 1)/c2
c1 = 0.281863093
c2 = 87.09937546
c3 = 0.035388128
linear = (pow(10, (legal_to_full(code_value) - c3) / c1) - 1) / c2
linear *= 0.9
return linear
cs.to_reference_transforms = []
if transfer_function:
if transfer_function == 'Canon-Log':
data = array.array('f', '\0' * lut_resolution_1d * 4)
for c in range(lut_resolution_1d):
data[c] = c_log_to_linear(1023 * c / (lut_resolution_1d - 1))
elif transfer_function == 'Canon-Log2':
data = array.array('f', '\0' * lut_resolution_1d * 4)
for c in range(lut_resolution_1d):
data[c] = c_log2_to_linear(1023 * c / (lut_resolution_1d - 1))
lut = '%s_to_linear.spi1d' % transfer_function
genlut.write_SPI_1d(
os.path.join(lut_directory, lut),
0,
1,
data,
lut_resolution_1d,
1)
cs.to_reference_transforms.append({
'type': 'lutFile',
'path': lut,
'interpolation': 'linear',
'direction': 'forward'})
#.........这里部分代码省略.........
示例10: create_v_log
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_v_log(gamut,
transfer_function,
lut_directory,
lut_resolution_1d,
aliases):
"""
Object description.
Panasonic V-Log to ACES.
Parameters
----------
parameter : type
Parameter description.
Returns
-------
type
Return value description.
"""
name = '%s - %s' % (transfer_function, gamut)
if transfer_function == '':
name = 'Linear - %s' % gamut
if gamut == '':
name = 'Curve - %s' % transfer_function
cs = ColorSpace(name)
cs.description = name
cs.aliases = aliases
cs.equality_group = ''
cs.family = 'Input/Panasonic'
cs.is_data = False
# A linear space needs allocation variables
if transfer_function == '':
cs.allocation_type = ocio.Constants.ALLOCATION_LG2
cs.allocation_vars = [-8, 5, 0.00390625]
def v_log_to_linear(x):
cut_inv = 0.181
b = 0.00873
c = 0.241514
d = 0.598206
if x <= cut_inv:
return (x - 0.125) / 5.6
else:
return pow(10, (x - d) / c) - b
cs.to_reference_transforms = []
if transfer_function == 'V-Log':
data = array.array('f', '\0' * lut_resolution_1d * 4)
for c in range(lut_resolution_1d):
data[c] = v_log_to_linear(float(c) / (lut_resolution_1d - 1))
lut = '%s_to_linear.spi1d' % transfer_function
genlut.write_SPI_1d(
os.path.join(lut_directory, lut),
0.0,
1.0,
data,
lut_resolution_1d,
1)
cs.to_reference_transforms.append({
'type': 'lutFile',
'path': lut,
'interpolation': 'linear',
'direction': 'forward'})
if gamut == 'V-Gamut':
cs.to_reference_transforms.append({
'type': 'matrix',
'matrix': [0.724382758, 0.166748484, 0.108497411, 0.0,
0.021354009, 0.985138372, -0.006319092, 0.0,
-0.009234278, -0.00104295, 1.010272625, 0.0,
0, 0, 0, 1.0],
'direction': 'forward'})
cs.from_reference_transforms = []
return cs
示例11: create_ACES_LMT
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_ACES_LMT(lmt_name,
lmt_values,
shaper_info,
aces_ctl_directory,
lut_directory,
lut_resolution_3d=64,
cleanup=True,
aliases=None):
"""
Creates the *ACES LMT* colorspace.
Parameters
----------
parameter : type
Parameter description.
Returns
-------
Colorspace
*ACES LMT* colorspace.
"""
if aliases is None:
aliases = []
cs = ColorSpace('%s' % lmt_name)
cs.description = 'The ACES Look Transform: %s' % lmt_name
cs.aliases = aliases
cs.equality_group = ''
cs.family = 'Look'
cs.is_data = False
cs.allocation_type = ocio.Constants.ALLOCATION_LG2
cs.allocation_vars = [-8, 5, 0.00390625]
cs.aces_transform_id = lmt_values['transformID']
pprint.pprint(lmt_values)
# Generating the *shaper* transform.
(shaper_name,
shaper_to_aces_ctl,
shaper_from_aces_ctl,
shaper_input_scale,
shaper_params) = shaper_info
shaper_lut = '%s_to_linear.spi1d' % shaper_name
shaper_lut = sanitize(shaper_lut)
shaper_ocio_transform = {
'type': 'lutFile',
'path': shaper_lut,
'interpolation': 'linear',
'direction': 'inverse'}
# Generating the forward transform.
cs.from_reference_transforms = []
if 'transformCTL' in lmt_values:
ctls = [shaper_to_aces_ctl % aces_ctl_directory,
os.path.join(aces_ctl_directory,
lmt_values['transformCTL'])]
lut = '%s.%s.spi3d' % (shaper_name, lmt_name)
lut = sanitize(lut)
generate_3d_LUT_from_CTL(
os.path.join(lut_directory, lut),
ctls,
lut_resolution_3d,
'float',
1 / shaper_input_scale,
1,
shaper_params,
cleanup,
aces_ctl_directory)
cs.from_reference_transforms.append(shaper_ocio_transform)
cs.from_reference_transforms.append({
'type': 'lutFile',
'path': lut,
'interpolation': 'tetrahedral',
'direction': 'forward'})
# Generating the inverse transform.
cs.to_reference_transforms = []
if 'transformCTLInverse' in lmt_values:
ctls = [os.path.join(aces_ctl_directory,
lmt_values['transformCTLInverse']),
shaper_from_aces_ctl % aces_ctl_directory]
lut = 'Inverse.%s.%s.spi3d' % (lmt_name, shaper_name)
lut = sanitize(lut)
generate_3d_LUT_from_CTL(
os.path.join(lut_directory, lut),
ctls,
lut_resolution_3d,
'half',
1,
shaper_input_scale,
#.........这里部分代码省略.........
示例12: create_s_log
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_s_log(gamut,
transfer_function,
name,
lut_directory,
lut_resolution_1d,
aliases):
"""
Object description.
SLog to ACES.
Parameters
----------
parameter : type
Parameter description.
Returns
-------
type
Return value description.
"""
name = '%s - %s' % (transfer_function, gamut)
if transfer_function == '':
name = 'Linear - %s' % gamut
if gamut == '':
name = '%s' % transfer_function
cs = ColorSpace(name)
cs.description = name
cs.aliases = aliases
cs.equality_group = ''
cs.family = 'Input/Sony'
cs.is_data = False
# A linear space needs allocation variables
if transfer_function == '':
cs.allocation_type = ocio.Constants.ALLOCATION_LG2
cs.allocation_vars = [-8, 5, 0.00390625]
def s_log1_to_linear(s_log):
b = 64.
ab = 90.
w = 940.
if s_log >= ab:
linear = ((pow(10.,
(((s_log - b) /
(w - b) - 0.616596 - 0.03) / 0.432699)) -
0.037584) * 0.9)
else:
linear = (((s_log - b) / (
w - b) - 0.030001222851889303) / 5.) * 0.9
return linear
def s_log2_to_linear(s_log):
b = 64.
ab = 90.
w = 940.
if s_log >= ab:
linear = ((219. * (pow(10.,
(((s_log - b) /
(w - b) - 0.616596 - 0.03) / 0.432699)) -
0.037584) / 155.) * 0.9)
else:
linear = (((s_log - b) / (
w - b) - 0.030001222851889303) / 3.53881278538813) * 0.9
return linear
def s_log3_to_linear(code_value):
if code_value >= 171.2102946929:
linear = (pow(10, ((code_value - 420) / 261.5)) *
(0.18 + 0.01) - 0.01)
else:
linear = (code_value - 95) * 0.01125000 / (171.2102946929 - 95)
return linear
cs.to_reference_transforms = []
if transfer_function == 'S-Log1':
data = array.array('f', '\0' * lut_resolution_1d * 4)
for c in range(lut_resolution_1d):
data[c] = s_log1_to_linear(1023 * c / (lut_resolution_1d - 1))
lut = '%s_to_linear.spi1d' % transfer_function
genlut.write_SPI_1d(
os.path.join(lut_directory, lut),
0,
1,
data,
lut_resolution_1d,
1)
cs.to_reference_transforms.append({
'type': 'lutFile',
'path': lut,
'interpolation': 'linear',
'direction': 'forward'})
#.........这里部分代码省略.........
示例13: create_log_c
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_log_c(gamut, transfer_function, exposure_index, lut_directory, lut_resolution_1d, aliases):
"""
Object description.
LogC to ACES.
Parameters
----------
parameter : type
Parameter description.
Returns
-------
type
Return value description.
"""
name = "%s (EI%s) - %s" % (transfer_function, exposure_index, gamut)
if transfer_function == "":
name = "Linear - ARRI %s" % gamut
if gamut == "":
name = "Curve - %s (EI%s)" % (transfer_function, exposure_index)
cs = ColorSpace(name)
cs.description = name
cs.aliases = aliases
cs.equality_group = ""
cs.family = "Input/ARRI"
cs.is_data = False
if gamut and transfer_function:
cs.aces_transform_id = "IDT.ARRI.Alexa-v3-logC-EI%s.a1.v1" % exposure_index
# A linear space needs allocation variables.
if transfer_function == "":
cs.allocation_type = ocio.Constants.ALLOCATION_LG2
cs.allocation_vars = [-8, 5, 0.00390625]
IDT_maker_version = "0.08"
nominal_EI = 400
black_signal = 0.003907
mid_gray_signal = 0.01
encoding_gain = 0.256598
encoding_offset = 0.391007
def gain_for_EI(EI):
return (math.log(EI / nominal_EI) / math.log(2) * (0.89 - 1) / 3 + 1) * encoding_gain
def log_c_inverse_parameters_for_EI(EI):
cut = 1 / 9
slope = 1 / (cut * math.log(10))
offset = math.log10(cut) - slope * cut
gain = EI / nominal_EI
gray = mid_gray_signal / gain
# The higher the EI, the lower the gamma.
enc_gain = gain_for_EI(EI)
enc_offset = encoding_offset
for i in range(0, 3):
nz = ((95 / 1023 - enc_offset) / enc_gain - offset) / slope
enc_offset = encoding_offset - math.log10(1 + nz) * enc_gain
a = 1 / gray
b = nz - black_signal / gray
e = slope * a * enc_gain
f = enc_gain * (slope * b + offset) + enc_offset
# Ensuring we can return relative exposure.
s = 4 / (0.18 * EI)
t = black_signal
b += a * t
a *= s
f += e * t
e *= s
return {"a": a, "b": b, "cut": (cut - b) / a, "c": enc_gain, "d": enc_offset, "e": e, "f": f}
def normalized_log_c_to_linear(code_value, exposure_index):
p = log_c_inverse_parameters_for_EI(exposure_index)
breakpoint = p["e"] * p["cut"] + p["f"]
if code_value > breakpoint:
linear = (pow(10, (code_value - p["d"]) / p["c"]) - p["b"]) / p["a"]
else:
linear = (code_value - p["f"]) / p["e"]
return linear
cs.to_reference_transforms = []
if transfer_function == "V3 LogC":
data = array.array("f", "\0" * lut_resolution_1d * 4)
for c in range(lut_resolution_1d):
data[c] = normalized_log_c_to_linear(c / (lut_resolution_1d - 1), int(exposure_index))
lut = "%s_to_linear.spi1d" % ("%s_%s" % (transfer_function, exposure_index))
lut = sanitize(lut)
genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data, lut_resolution_1d, 1)
cs.to_reference_transforms.append(
#.........这里部分代码省略.........
示例14: create_log_c
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_log_c(gamut,
transfer_function,
exposure_index,
lut_directory,
lut_resolution_1d,
aliases):
"""
Creates colorspace covering the conversion from LogC to ACES, with various transfer
functions and encoding gamuts covered
Parameters
----------
gamut : str
The name of the encoding gamut to use.
transfer_function : str
The name of the transfer function to use
exposure_index : str
The exposure index to use
lut_directory : str or unicode
The directory to use when generating LUTs
lut_resolution_1d : int
The resolution of generated 1D LUTs
aliases : list of str
Aliases for this colorspace
Returns
-------
ColorSpace
A ColorSpace container class referencing the LUTs, matrices and identifying
information for the requested colorspace.
"""
name = '%s (EI%s) - %s' % (transfer_function, exposure_index, gamut)
if transfer_function == '':
name = 'Linear - ARRI %s' % gamut
if gamut == '':
name = 'Curve - %s (EI%s)' % (transfer_function, exposure_index)
cs = ColorSpace(name)
cs.description = name
cs.aliases = aliases
cs.equality_group = ''
cs.family = 'Input/ARRI'
cs.is_data = False
if gamut and transfer_function:
cs.aces_transform_id = (
'IDT.ARRI.Alexa-v3-logC-EI%s.a1.v1' % exposure_index)
# A linear space needs allocation variables.
if transfer_function == '':
cs.allocation_type = ocio.Constants.ALLOCATION_LG2
cs.allocation_vars = [-8, 5, 0.00390625]
IDT_maker_version = '0.08'
nominal_EI = 400
black_signal = 0.003907
mid_gray_signal = 0.01
encoding_gain = 0.256598
encoding_offset = 0.391007
def gain_for_EI(EI):
return (math.log(EI / nominal_EI) / math.log(2) * (
0.89 - 1) / 3 + 1) * encoding_gain
def log_c_inverse_parameters_for_EI(EI):
cut = 1 / 9
slope = 1 / (cut * math.log(10))
offset = math.log10(cut) - slope * cut
gain = EI / nominal_EI
gray = mid_gray_signal / gain
# The higher the EI, the lower the gamma.
enc_gain = gain_for_EI(EI)
enc_offset = encoding_offset
for i in range(0, 3):
nz = ((95 / 1023 - enc_offset) / enc_gain - offset) / slope
enc_offset = encoding_offset - math.log10(1 + nz) * enc_gain
a = 1 / gray
b = nz - black_signal / gray
e = slope * a * enc_gain
f = enc_gain * (slope * b + offset) + enc_offset
# Ensuring we can return relative exposure.
s = 4 / (0.18 * EI)
t = black_signal
b += a * t
a *= s
f += e * t
e *= s
return {'a': a,
'b': b,
'cut': (cut - b) / a,
'c': enc_gain,
'd': enc_offset,
'e': e,
'f': f}
#.........这里部分代码省略.........
示例15: create_matrix_plus_transfer_colorspace
# 需要导入模块: from aces_ocio.utilities import ColorSpace [as 别名]
# 或者: from aces_ocio.utilities.ColorSpace import allocation_vars [as 别名]
def create_matrix_plus_transfer_colorspace(
name='matrix_plus_transfer',
transfer_function_name='transfer_function',
transfer_function=lambda x: x,
lut_directory='/tmp',
lut_resolution_1d=1024,
from_reference_values=None,
to_reference_values=None,
aliases=None):
"""
Creates a ColorSpace that uses transfer functions encoded as 1D LUTs and
matrice
Parameters
----------
name : str, optional
Aliases for this colorspace
transfer_function_name : str, optional
The name of the transfer function
transfer_function : function, optional
The transfer function to be evaluated
lut_directory : str or unicode
The directory to use when generating LUTs
lut_resolution_1d : int
The resolution of generated 1D LUTs
from_reference_values : list of matrices
List of matrices to convert from the reference colorspace to this space
to_reference_values : list of matrices
List of matrices to convert to the reference colorspace from this space
aliases : list of str
Aliases for this colorspace
Returns
-------
ColorSpace
A *Matrx and LUT1D Transform*-based ColorSpace representing a transfer
function and matrix
"""
if from_reference_values is None:
from_reference_values = []
if to_reference_values is None:
to_reference_values = []
if aliases is None:
aliases = []
cs = ColorSpace(name)
cs.description = 'The %s color space' % name
cs.aliases = aliases
cs.equality_group = name
cs.family = 'Utility'
cs.is_data = False
# A linear space needs allocation variables.
cs.allocation_type = ocio.Constants.ALLOCATION_UNIFORM
cs.allocation_vars = [0, 1]
# Sampling the transfer function.
data = array.array('f', '\0' * lut_resolution_1d * 4)
for c in range(lut_resolution_1d):
data[c] = transfer_function(c / (lut_resolution_1d - 1))
# Writing the sampled data to a *LUT*.
lut = '%s_to_linear.spi1d' % transfer_function_name
genlut.write_SPI_1d(
os.path.join(lut_directory, lut),
0,
1,
data,
lut_resolution_1d,
1)
# Creating the *to_reference* transforms.
cs.to_reference_transforms = []
if to_reference_values:
cs.to_reference_transforms.append({
'type': 'lutFile',
'path': lut,
'interpolation': 'linear',
'direction': 'forward'})
for matrix in to_reference_values:
cs.to_reference_transforms.append({
'type': 'matrix',
'matrix': mat44_from_mat33(matrix),
'direction': 'forward'})
# Creating the *from_reference* transforms.
cs.from_reference_transforms = []
if from_reference_values:
for matrix in from_reference_values:
cs.from_reference_transforms.append({
'type': 'matrix',
'matrix': mat44_from_mat33(matrix),
'direction': 'forward'})
cs.from_reference_transforms.append({
'type': 'lutFile',
#.........这里部分代码省略.........