当前位置: 首页>>代码示例>>Python>>正文


Python DataProcessing.DataProcessing类代码示例

本文整理汇总了Python中WMCore.WMSpec.StdSpecs.DataProcessing.DataProcessing的典型用法代码示例。如果您正苦于以下问题:Python DataProcessing类的具体用法?Python DataProcessing怎么用?Python DataProcessing使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了DataProcessing类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __call__

    def __call__(self, workloadName, arguments):
        """
        _call_

        Create a ReReco workload with the given parameters.
        """
        DataProcessing.__call__(self, workloadName, arguments)

        # Arrange the skims in a skimConfig object (i.e. a list of skim configurations)
        self.skimConfigs = []
        skimIndex = 1
        while "SkimName%s" % skimIndex in arguments:
            skimConfig = {}
            skimConfig["SkimName"] = arguments["SkimName%s" % skimIndex]
            skimConfig["SkimInput"] = arguments["SkimInput%s" % skimIndex]
            skimConfig["ConfigCacheID"] = arguments["Skim%sConfigCacheID" % skimIndex]
            skimConfig["TimePerEvent"] = float(arguments.get("SkimTimePerEvent%s" % skimIndex, self.timePerEvent))
            skimConfig["SizePerEvent"] = float(arguments.get("SkimSizePerEvent%s" % skimIndex, self.sizePerEvent))
            skimConfig["Memory"] = float(arguments.get("SkimMemory%s" % skimIndex, self.memory))
            skimConfig["SkimJobSplitAlgo"] = arguments.get("SkimSplittingAlgo%s" % skimIndex, "FileBased")
            skimConfig["SkimJobSplitArgs"] = {"include_parents" : True}
            if skimConfig["SkimJobSplitAlgo"] == "FileBased":
                skimConfig["SkimJobSplitArgs"]["files_per_job"] = int(arguments.get("SkimFilesPerJob%s" % skimIndex, 1))
            elif skimConfig["SkimJobSplitAlgo"] == "EventBased" or skimConfig["SkimJobSplitAlgo"] == "EventAwareLumiBased":
                skimConfig["SkimJobSplitArgs"]["events_per_job"] = int(arguments.get("SkimEventsPerJob%s" % skimIndex, int((8.0 * 3600.0) / skimConfig["TimePerEvent"])))
                if skimConfig["SkimJobSplitAlgo"] == "EventAwareLumiBased":
                    skimConfig["SkimJobSplitAlgo"]["max_events_per_lumi"] = 20000
            elif skimConfig["SkimJobSplitAlgo"] == "LumiBased":
                skimConfig["SkimJobSplitArgs"["lumis_per_job"]] = int(arguments.get("SkimLumisPerJob%s" % skimIndex, 8))
            self.skimConfigs.append(skimConfig)
            skimIndex += 1

        return self.buildWorkload()
开发者ID:AndrewLevin,项目名称:WMCore,代码行数:33,代码来源:ReReco.py

示例2: getWorkloadCreateArgs

 def getWorkloadCreateArgs():
     baseArgs = DataProcessing.getWorkloadCreateArgs()
     specArgs = {"RequestType": {"default": "ReDigi", "optional": False},
                 "StepOneOutputModuleName": {"null": True},
                 "StepTwoOutputModuleName": {"null": True},
                 "ConfigCacheID": {"optional": True, "null": True},
                 "StepOneConfigCacheID": {"optional": False, "null": True},
                 "StepTwoConfigCacheID": {"null": True},
                 "StepThreeConfigCacheID": {"null": True},
                 "KeepStepOneOutput": {"default": True, "type": strToBool, "null": False},
                 "KeepStepTwoOutput": {"default": True, "type": strToBool, "null": False},
                 "StepTwoTimePerEvent": {"type": float, "null": True,
                                         "validate": lambda x: x > 0},
                 "StepThreeTimePerEvent": {"type": float, "null": True,
                                           "validate": lambda x: x > 0},
                 "StepTwoSizePerEvent": {"type": float, "null": True,
                                         "validate": lambda x: x > 0},
                 "StepThreeSizePerEvent": {"type": float, "null": True,
                                           "validate": lambda x: x > 0},
                 "StepTwoMemory": {"type": float, "null": True,
                                   "validate": lambda x: x > 0},
                 "StepThreeMemory": {"type": float, "null": True,
                                     "validate": lambda x: x > 0},
                 "MCPileup": {"validate": dataset, "attr": "mcPileup", "null": True},
                 "DataPileup": {"null": True, "validate": dataset},
                 "DeterministicPileup": {"default": False, "type": strToBool, "null": False}}
     baseArgs.update(specArgs)
     DataProcessing.setDefaultArgumentsProperty(baseArgs)
     return baseArgs
开发者ID:,项目名称:,代码行数:29,代码来源:

示例3: __call__

    def __call__(self, workloadName, arguments):
        """
        _call_

        Create a DQMHarvest workload with the given parameters.
        """
        DataProcessing.__call__(self, workloadName, arguments)

        self.workload = self.createWorkload()

        self.workload.setDashboardActivity("harvesting")

        splitArgs = {"runs_per_job": 1}
        if self.dqmHarvestUnit == "multiRun":
            # then it should result in a single job in the end, very high number of runs
            splitArgs['runs_per_job'] = 999999
        self.workload.setWorkQueueSplitPolicy("Dataset", "Harvest", splitArgs)

        # also creates the logCollect job by default
        self.addDQMHarvestTask(uploadProxy=self.dqmUploadProxy,
                               periodic_harvest_interval=self.periodicHarvestInterval,
                               dqmHarvestUnit=self.dqmHarvestUnit)

        # setting the parameters which need to be set for all the tasks
        # sets acquisitionEra, processingVersion, processingString
        self.workload.setTaskPropertiesFromWorkload()
        self.reportWorkflowToDashboard(self.workload.getDashboardActivity())

        return self.workload
开发者ID:dmwm,项目名称:WMCore,代码行数:29,代码来源:DQMHarvest.py

示例4: __call__

    def __call__(self, workloadName, arguments):
        """
        _call_

        Create a ReDigi workload with the given parameters.
        """
        DataProcessing.__call__(self, workloadName, arguments)

        # Transform the pileup as required by the CMSSW step
        self.pileupConfig = parsePileupConfig(self.mcPileup, self.dataPileup)

        # Adjust the pileup splitting
        self.procJobSplitArgs.setdefault("deterministicPileup", self.deterministicPileup)

        # Adjust the sizePerEvent, timePerEvent and memory for step two and three
        if self.stepTwoTimePerEvent is None:
            self.stepTwoTimePerEvent = self.timePerEvent
        if self.stepTwoSizePerEvent is None:
            self.stepTwoSizePerEvent = self.sizePerEvent
        if self.stepTwoMemory is None:
            self.stepTwoMemory = self.memory
        if self.stepThreeTimePerEvent is None:
            self.stepThreeTimePerEvent = self.timePerEvent
        if self.stepThreeSizePerEvent is None:
            self.stepThreeSizePerEvent = self.sizePerEvent
        if self.stepThreeMemory is None:
            self.stepThreeMemory = self.memory


        return self.buildWorkload()
开发者ID:franzoni,项目名称:WMCore,代码行数:30,代码来源:ReDigi.py

示例5: getWorkloadArguments

 def getWorkloadArguments():
     baseArgs = DataProcessing.getWorkloadArguments()
     specArgs = {"RequestType": {"default": "MonteCarloFromGEN", "optional": True,
                                 "attr": "requestType"},
                 "PrimaryDataset": {"default": None, "type": str,
                                    "optional": True, "validate": primdataset,
                                    "attr": "inputPrimaryDataset", "null": True},
                 "ConfigCacheUrl": {"default": None, "type": str,
                                    "optional": True, "validate": None,
                                    "attr": "configCacheUrl", "null": False},
                 "ConfigCacheID": {"default": None, "type": str,
                                   "optional": False, "validate": None,
                                   "attr": "configCacheID", "null": True},
                 "MCPileup": {"default": None, "type": str,
                              "optional": True, "validate": dataset,
                              "attr": "mcPileup", "null": True},
                 "DataPileup": {"default": None, "type": str,
                                "optional": True, "validate": dataset,
                                "attr": "dataPileup", "null": True},
                 "DeterministicPileup": {"default": False, "type": strToBool,
                                         "optional": True, "validate": None,
                                         "attr": "deterministicPileup", "null": False}}
     baseArgs.update(specArgs)
     DataProcessing.setDefaultArgumentsProperty(baseArgs)
     return baseArgs
开发者ID:,项目名称:,代码行数:25,代码来源:

示例6: __call__

    def __call__(self, workloadName, arguments):
        """
        _call_

        Create a MonteCarloFromGEN workload with the given parameters.
        """
        DataProcessing.__call__(self, workloadName, arguments)
        return self.buildWorkload()
开发者ID:lucacopa,项目名称:WMCore,代码行数:8,代码来源:MonteCarloFromGEN.py

示例7: getWorkloadAssignArgs

 def getWorkloadAssignArgs():
     baseArgs = DataProcessing.getWorkloadAssignArgs()
     specArgs = {
         "Override": {"default": {"eos-lfn-prefix": "root://eoscms.cern.ch//eos/cms/store/logs/prod/recent/PromptReco"},
                      "type": dict},
         }
     baseArgs.update(specArgs)
     DataProcessing.setDefaultArgumentsProperty(baseArgs)
     return baseArgs
开发者ID:,项目名称:,代码行数:9,代码来源:

示例8: getWorkloadCreateArgs

    def getWorkloadCreateArgs():

        baseArgs = DataProcessing.getWorkloadCreateArgs()
        specArgs = {"RequestType" : {"default" : "ReReco", "optional" : False},
                    "TransientOutputModules" : {"default" : [], "type" : makeList,
                                                "attr" : "transientModules", "null" : False}
                    }
        baseArgs.update(specArgs)
        DataProcessing.setDefaultArgumentsProperty(baseArgs)
        return baseArgs
开发者ID:dmwm,项目名称:WMCore,代码行数:10,代码来源:ReReco.py

示例9: getWorkloadCreateArgs

 def getWorkloadCreateArgs():
     baseArgs = DataProcessing.getWorkloadCreateArgs()
     specArgs = {"RequestType": {"default": "DQMHarvest", "optional": True},
                 "ConfigCacheID": {"optional": True, "null": True},
                 "DQMConfigCacheID": {"optional": False, "attr": "dqmConfigCacheID"},
                 "DQMUploadUrl": {"optional": False, "attr": "dqmUploadUrl"},
                }
     baseArgs.update(specArgs)
     DataProcessing.setDefaultArgumentsProperty(baseArgs)
     return baseArgs
开发者ID:dmwm,项目名称:WMCore,代码行数:10,代码来源:DQMHarvest.py

示例10: validateSchema

    def validateSchema(self, schema):
        """
        _validateSchema_

        Standard DataProcessing schema validation.
        """
        DataProcessing.validateSchema(self, schema)

        self.validateConfigCacheExists(configID=schema["DQMConfigCacheID"],
                                       configCacheUrl=schema['ConfigCacheUrl'],
                                       couchDBName=schema["CouchDBName"],
                                       getOutputModules=False)
开发者ID:dmwm,项目名称:WMCore,代码行数:12,代码来源:DQMHarvest.py

示例11: validateSchema

    def validateSchema(self, schema):
        """
        _validateSchema_

        Standard StdBase schema validation, plus verification
        of the ConfigCacheID
        """
        DataProcessing.validateSchema(self, schema)
        couchUrl = schema.get("ConfigCacheUrl", None) or schema["CouchURL"]
        self.validateConfigCacheExists(configID=schema["ConfigCacheID"],
                                       couchURL=couchUrl,
                                       couchDBName=schema["CouchDBName"])
        return
开发者ID:,项目名称:,代码行数:13,代码来源:

示例12: __call__

    def __call__(self, workloadName, arguments):
        """
        _call_

        Create a MonteCarloFromGEN workload with the given parameters.
        """
        DataProcessing.__call__(self, workloadName, arguments)

        # Transform the pileup as required by the CMSSW step
        self.pileupConfig = parsePileupConfig(self.mcPileup, self.dataPileup)
        # Adjust the pileup splitting
        self.procJobSplitArgs.setdefault("deterministicPileup", self.deterministicPileup)

        return self.buildWorkload()
开发者ID:,项目名称:,代码行数:14,代码来源:

示例13: validateSchema

    def validateSchema(self, schema):
        """
        _validateSchema_

        Standard StdBase schema validation, plus verification
        of the ConfigCacheID
        """
        DataProcessing.validateSchema(self, schema)
        self.validateConfigCacheExists(configID=schema["ConfigCacheID"],
                                       configCacheUrl=schema['ConfigCacheUrl'],
                                       couchDBName=schema["CouchDBName"],
                                       getOutputModules=False)

        return
开发者ID:alexanderrichards,项目名称:WMCore,代码行数:14,代码来源:MonteCarloFromGEN.py

示例14: __init__

    def __init__(self):
        """
        __init__

        Setup parameters that will be later overwritten in the call,
        otherwise pylint will complain about them.
        """
        DataProcessing.__init__(self)
        self.stepTwoMemory = None
        self.stepTwoSizePerEvent = None
        self.stepTwoTimePerEvent = None
        self.stepThreeMemory = None
        self.stepThreeSizePerEvent = None
        self.stepThreeTimePerEvent = None
开发者ID:,项目名称:,代码行数:14,代码来源:

示例15: getWorkloadArguments

 def getWorkloadArguments():
     baseArgs = DataProcessing.getWorkloadArguments()
     specArgs = {"PrimaryDataset" : {"default" : None, "type" : str,
                                     "optional" : True, "validate" : primdataset,
                                     "attr" : "inputPrimaryDataset", "null" : False},
                 "ConfigCacheID" : {"default" : None, "type" : str,
                                    "optional" : False, "validate" : None,
                                    "attr" : "configCacheID", "null" : False}}
     baseArgs.update(specArgs)
     return baseArgs
开发者ID:franzoni,项目名称:WMCore,代码行数:10,代码来源:MonteCarloFromGEN.py


注:本文中的WMCore.WMSpec.StdSpecs.DataProcessing.DataProcessing类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。