当前位置: 首页>>代码示例>>Python>>正文


Python TreeNode.categorical方法代码示例

本文整理汇总了Python中TreeNode.TreeNode.categorical方法的典型用法代码示例。如果您正苦于以下问题:Python TreeNode.categorical方法的具体用法?Python TreeNode.categorical怎么用?Python TreeNode.categorical使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TreeNode.TreeNode的用法示例。


在下文中一共展示了TreeNode.categorical方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _build_tree

# 需要导入模块: from TreeNode import TreeNode [as 别名]
# 或者: from TreeNode.TreeNode import categorical [as 别名]
    def _build_tree(self, X, y):
        '''
        INPUT:
            - X: 2d numpy array
            - y: 1d numpy array
        OUTPUT:
            - TreeNode

        Recursively build the decision tree. Return the root node.
        '''

        node = TreeNode()
        index, value, splits = self._choose_split_index(X, y)

        if index is None or len(np.unique(y)) == 1:
            node.leaf = True
            node.classes = Counter(y)
            node.name = node.classes.most_common(1)[0][0]
        else:
            X1, y1, X2, y2 = splits
            node.column = index
            node.name = self.feature_names[index]
            node.value = value
            node.categorical = self.categorical[index]
            node.left = self._build_tree(X1, y1)
            node.right = self._build_tree(X2, y2)
        return node
开发者ID:balajikvijayan,项目名称:MachineLearning,代码行数:29,代码来源:DecisionTree.py

示例2: _build_tree

# 需要导入模块: from TreeNode import TreeNode [as 别名]
# 或者: from TreeNode.TreeNode import categorical [as 别名]
    def _build_tree(self, X, y):
        '''
        INPUT:
            - X: 2d numpy array
            - y: 1d numpy array
        OUTPUT:
            - TreeNode
        Recursively build the decision tree. Return the root node.
        '''

        #  * initialize a root TreeNode
        node = TreeNode()
        # * set index, value, splits as the output of self._choose_split_index(X,y)
        index, value, splits = self._choose_split_index(X,y)
        # if no index is returned from the split index or we cannot split
        if index is None or len(np.unique(y)) == 1:
            # * set the node to be a leaf
            node.leaf = True
            # * set the classes attribute to the number of classes
            node.classes = Counter(y)
            # * we have in this leaf with Counter()
            # * set the name of the node to be the most common class in it
            node.name = node.classes.most_common(1)[0][0]
        else: # otherwise we can split (again this comes out of choose_split_index
            # * set X1, y1, X2, y2 to be the splits
            X1, y1, X2, y2 = splits
            # * the node column should be set to the index coming from split_index
            node.column = index
            # * the node name is the feature name as determined by
            #   the index (column name)
            node.name = self.feature_names[index]
            # * set the node value to be the value of the split
            node.value = value
            # * set the categorical flag of the node to be the category of the column
            node.categorical = self.categorical[index]
            # * now continue recursing down both branches of the split
            node.left = self._build_tree(X1, y1)
            node.right = self._build_tree(X2, y2)
        return node
开发者ID:gff130,项目名称:Machine_Learning_Algorithm,代码行数:41,代码来源:DecisionTree.py

示例3: _build_tree

# 需要导入模块: from TreeNode import TreeNode [as 别名]
# 或者: from TreeNode.TreeNode import categorical [as 别名]
    def _build_tree(self, X, y, pre_prune_type, pre_prune_size):
        '''
        INPUT:
            - X: 2d numpy array
            - y: 1d numpy array
        OUTPUT:
            - TreeNode

        Recursively build the decision tree. Return the root node.
        '''

        if pre_prune_type == 'leaf_size':
            leaf_size = pre_prune_size
        else:
            leaf_size = 1

        if pre_prune_type == 'depth':
            tree_depth = pre_prune_size
        else:
            tree_depth = X.shape[0]*X.shape[1]

        node = TreeNode()
        index, value, splits = self._choose_split_index(X, y)

        if index is None or len(np.unique(y)) == 1 or len(y) < leaf_size or \
        self.depth > tree_depth:
            node.leaf = True
            node.classes = Counter(y)
            node.name = node.classes.most_common(1)[0][0]
        else:
            self.depth += 1
            X1, y1, X2, y2 = splits
            node.column = index
            node.name = self.feature_names[index]
            node.value = value
            node.categorical = self.categorical[index]
            node.left = self._build_tree(X1, y1, pre_prune_type, pre_prune_size)
            node.right = self._build_tree(X2, y2, pre_prune_type, pre_prune_size)
        return node
开发者ID:wlau88,项目名称:data_science_knowledge,代码行数:41,代码来源:DecisionTree.py


注:本文中的TreeNode.TreeNode.categorical方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。