本文整理汇总了Python中SUAVE.Core.Data.landing方法的典型用法代码示例。如果您正苦于以下问题:Python Data.landing方法的具体用法?Python Data.landing怎么用?Python Data.landing使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SUAVE.Core.Data
的用法示例。
在下文中一共展示了Data.landing方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: shevell
# 需要导入模块: from SUAVE.Core import Data [as 别名]
# 或者: from SUAVE.Core.Data import landing [as 别名]
def shevell(weight_landing, number_of_engines, thrust_sea_level, thrust_landing):
#process
baseline_noise = 101.
thrust_percentage = (thrust_sea_level/ Units.force_pound)/25000 * 100.
thrust_reduction = thrust_landing/thrust_sea_level * 100.
noise_increase_due_to_thrust = - 0.0002193 * thrust_percentage ** 2. + 0.09454 * thrust_percentage - 7.30116
noise_landing = - 0.0015766 * thrust_reduction ** 2. + 0.34882 * thrust_reduction -19.2569
takeoff_distance_noise = -4. # 1500 ft altitude at 6500m from start of take-off
sideline_distance_noise = -6.5 # 1476 ft (450m) from centerline (effective distance = 1476*1.25 = 1845ft)
landing_distance_noise = 9.1 # 370 ft altitude at 6562 ft (2000m) from runway
takeoff = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 4. \
+ takeoff_distance_noise + noise_increase_due_to_thrust
side_line = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 4. \
+ sideline_distance_noise + noise_increase_due_to_thrust
landing = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 5. \
+ landing_distance_noise + noise_increase_due_to_thrust + noise_landing
airframe = 40. + 10. * np.log10(weight_landing / Units.lbs)
output = Data()
output.takeoff = takeoff
output.side_line = side_line
output.landing = 10. * np.log10(10. ** (airframe/10.) + 10. ** (landing/10.))
return output
示例2: shevell
# 需要导入模块: from SUAVE.Core import Data [as 别名]
# 或者: from SUAVE.Core.Data import landing [as 别名]
def shevell(weight_landing, number_of_engines, thrust_sea_level, thrust_landing):
""" This uses correlations from Shevell, also used in AA241A/B, to calculate the sources for noise
Assumptions:
None
Source:
Stanford AA 241A/B Notes
Inputs:
weight_landing [newtons]
number_of_engines [int]
thrust_sea_level [newtons]
thrust_landing [newtons]
Outputs:
output.
takeoff [float]
side_line [float]
landing [float]
Properties Used:
baseline noise = 101.
various tuned correlations
"""
#process
baseline_noise = 101.
thrust_percentage = (thrust_sea_level/ Units.force_pound)/25000 * 100.
thrust_reduction = thrust_landing/thrust_sea_level * 100.
noise_increase_due_to_thrust = - 0.0002193 * thrust_percentage ** 2. + 0.09454 * thrust_percentage - 7.30116
noise_landing = - 0.0015766 * thrust_reduction ** 2. + 0.34882 * thrust_reduction -19.2569
takeoff_distance_noise = -4. # 1500 ft altitude at 6500m from start of take-off
sideline_distance_noise = -6.5 # 1476 ft (450m) from centerline (effective distance = 1476*1.25 = 1845ft)
landing_distance_noise = 9.1 # 370 ft altitude at 6562 ft (2000m) from runway
takeoff = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 4. \
+ takeoff_distance_noise + noise_increase_due_to_thrust
side_line = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 4. \
+ sideline_distance_noise + noise_increase_due_to_thrust
landing = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 5. \
+ landing_distance_noise + noise_increase_due_to_thrust + noise_landing
airframe = 40. + 10. * np.log10(weight_landing / Units.lbs)
output = Data()
output.takeoff = takeoff
output.side_line = side_line
output.landing = 10. * np.log10(10. ** (airframe/10.) + 10. ** (landing/10.))
return output
示例3: main
# 需要导入模块: from SUAVE.Core import Data [as 别名]
# 或者: from SUAVE.Core.Data import landing [as 别名]
def main():
weight_landing = 300000 * Units.lbs
number_of_engines = 3.
thrust_sea_level = 40000 * Units.force_pounds
thrust_landing = 0.45 * thrust_sea_level
noise = Correlations.shevell(weight_landing, number_of_engines, thrust_sea_level, thrust_landing)
actual = Data()
actual.takeoff = 99.7
actual.side_line = 97.2
actual.landing = 105.2
error = Data()
error.takeoff = (actual.takeoff - noise.takeoff)/actual.takeoff
error.side_line = (actual.side_line - noise.side_line)/actual.side_line
error.landing = (actual.landing - noise.landing)/actual.landing
for k,v in error.items():
assert(np.abs(v)<0.005)
return
示例4: shevell
# 需要导入模块: from SUAVE.Core import Data [as 别名]
# 或者: from SUAVE.Core.Data import landing [as 别名]
def shevell(weight_landing, number_of_engines, thrust_sea_level, thrust_landing):
""" weight = SUAVE.Methods.Noise.Correlations.shevell(weight_landing, number_of_engines, thrust_sea_level, thrust_landing)
Inputs:
weight_landing - Landing weight of the aircraft [kilograms]
number of engines - Number of engines installed on the aircraft [Dimensionless]
thrust_sea_level - Sea Level Thrust of the Engine [Newtons]
thrust_landing - Thrust of the aircraft coming in for landing [Newtons]
Outputs:
output() - Data Class
takeoff - Noise of the aircraft at takeoff directly along the runway centerline (500 ft altitude at 6500m from start of take-off) [dB]
side_line - Noise of the aircraft at takeoff at the sideline measurement station (1,476 ft (450m) from centerline (effective distance = 1476*1.25 = 1845ft)[dB]
landing - Noise of the aircraft at landing directly along the trajectory (370 ft altitude at 6562 ft (2000m) from runway) [dB]
Assumptions:
The baseline case used is 101 PNdb, 25,000 lb thrust, 1 engine, 1000ft
The noise_increase_due_to_thrust and noise_landing are equation extracted from images.
This is only meant to give a rough estimate compared to a DC-10 aircraft. As the aircraft configuration varies from this configuration, the validity of the method will also degrade.
"""
#process
baseline_noise = 101
thrust_percentage = (thrust_sea_level/ Units.force_pound)/25000 * 100.
thrust_reduction = thrust_landing/thrust_sea_level * 100.
noise_increase_due_to_thrust = -0.0002193 * thrust_percentage ** 2. + 0.09454 * thrust_percentage - 7.30116
noise_landing = - 0.0015766 * thrust_reduction ** 2. + 0.34882 * thrust_reduction -19.2569
takeoff_distance_noise = -4. # 1500 ft altitude at 6500m from start of take-off
sideline_distance_noise = -6.5 #1 476 ft (450m) from centerline (effective distance = 1476*1.25 = 1845ft)
landing_distance_noise = 9.1 # 370 ft altitude at 6562 ft (2000m) from runway
takeoff = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 4. + takeoff_distance_noise + noise_increase_due_to_thrust
side_line = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 4. + sideline_distance_noise + noise_increase_due_to_thrust
landing = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 5. + landing_distance_noise + noise_increase_due_to_thrust + noise_landing
airframe = 40. + 10. * np.log10(weight_landing / Units.lbs)
output = Data()
output.takeoff = takeoff
output.side_line = side_line
output.landing = 10. * np.log10(10. ** (airframe/10.) + 10. ** (landing/10.))
return output
示例5: evaluate_field_length
# 需要导入模块: from SUAVE.Core import Data [as 别名]
# 或者: from SUAVE.Core.Data import landing [as 别名]
def evaluate_field_length(vehicle,mission,results):
# unpack
airport = mission.airport
takeoff_config = vehicle.configs.takeoff
landing_config = vehicle.configs.landing
from SUAVE.Methods.Performance import estimate_take_off_field_length
from SUAVE.Methods.Performance import estimate_landing_field_length
# evaluate
TOFL = estimate_take_off_field_length(vehicle,takeoff_config,airport)
LFL = estimate_landing_field_length(vehicle,landing_config,airport)
# pack
field_length = Data()
field_length.takeoff = TOFL[0]
field_length.landing = LFL[0]
results.field_length = field_length
return results
示例6: extrapolation
# 需要导入模块: from SUAVE.Core import Data [as 别名]
# 或者: from SUAVE.Core.Data import landing [as 别名]
def extrapolation(weight_landing, number_of_engines, thrust_sea_level, thrust_landing):
""" weight = SUAVE.Methods.Weights.Correlations.Tube_Wing.landing_gear(TOW)
Inputs:
Outputs:
Assumptions:
The baseline case is 101 PNdb, 25,000 lb thrust, 1 engine, 1000ft
"""
#process
baseline_noise = 101
thrust_percentage = (thrust_sea_level/ Units.force_pound)/25000 * 100.
thrust_reduction = thrust_landing/thrust_sea_level * 100.
noise_increase_due_to_thrust = -0.0002193 * thrust_percentage ** 2. + 0.09454 * thrust_percentage - 7.30116
noise_landing = - 0.0015766 * thrust_reduction ** 2. + 0.34882 * thrust_reduction -19.2569
takeoff_distance_noise = -4. # 1500 ft altitude at 6500m from start of take-off
sideline_distance_noise = -6.5 #1 476 ft (450m) from centerline (effective distance = 1476*1.25 = 1845ft)
landing_distance_noise = 9.1 # 370 ft altitude at 6562 ft (2000m) from runway
takeoff = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 4. + takeoff_distance_noise + noise_increase_due_to_thrust
side_line = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 4. + sideline_distance_noise + noise_increase_due_to_thrust
landing = 10. * np.log10(10. ** (baseline_noise/10.) * number_of_engines) - 5. + landing_distance_noise + noise_increase_due_to_thrust + noise_landing
airframe = 40. + 10. * np.log10(weight_landing)
output = Data()
output.takeoff = takeoff
output.side_line = side_line
output.landing = 10. * np.log10(10. ** (airframe/10.) + 10. ** (landing/10.))
return output