本文整理汇总了Python中PyMca5.PyMcaIO.ArraySave.getHDF5FileInstanceAndBuffer方法的典型用法代码示例。如果您正苦于以下问题:Python ArraySave.getHDF5FileInstanceAndBuffer方法的具体用法?Python ArraySave.getHDF5FileInstanceAndBuffer怎么用?Python ArraySave.getHDF5FileInstanceAndBuffer使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PyMca5.PyMcaIO.ArraySave
的用法示例。
在下文中一共展示了ArraySave.getHDF5FileInstanceAndBuffer方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: loadFileList
# 需要导入模块: from PyMca5.PyMcaIO import ArraySave [as 别名]
# 或者: from PyMca5.PyMcaIO.ArraySave import getHDF5FileInstanceAndBuffer [as 别名]
#.........这里部分代码省略.........
('PySide' in sys.modules) or\
('PyMca5.PyMcaGui.PyMcaQt' in sys.modules):
qtflag = True
hdf5done = False
if HDF5 and qtflag:
from PyMca5.PyMcaGui import PyMcaQt as qt
from PyMca5.PyMcaIO import ArraySave
msg=qt.QMessageBox.information( None,
"Memory error\n",
"Do you want to convert your data to HDF5?\n",
qt.QMessageBox.Yes,qt.QMessageBox.No)
if msg != qt.QMessageBox.No:
hdf5file = qt.QFileDialog.getSaveFileName(None,
"Please select output file name",
os.path.dirname(filelist[0]),
"HDF5 files *.h5")
if not len(hdf5file):
raise IOError("Invalid output file")
hdf5file = qt.safe_str(hdf5file)
if not hdf5file.endswith(".h5"):
hdf5file += ".h5"
#get the final shape
from PyMca5.RGBCorrelatorWidget import ImageShapeDialog
stackImageShape = self.nbFiles,\
int(numberofmca/numberofdetectors)
dialog = ImageShapeDialog(None, shape =stackImageShape)
dialog.setModal(True)
ret = dialog.exec_()
if ret:
stackImageShape= dialog.getImageShape()
dialog.close()
del dialog
hdf, self.data = ArraySave.getHDF5FileInstanceAndBuffer(hdf5file,
(stackImageShape[0],
stackImageShape[1],
arrRet.shape[0]),
compression=None,
interpretation="spectrum")
nRow = 0
nCol = 0
for tempFileName in filelist:
tempInstance=specfile.Specfile(tempFileName)
#it can only be here if there is one scan per file
#prevent problems if the scan number is different
#scan = tempInstance.select(keylist[-1])
scan = tempInstance[-1]
nRow = int(self.incrProgressBar/stackImageShape[1])
nCol = self.incrProgressBar%stackImageShape[1]
for i in iterlist:
#mcadata = scan_obj.mca(i)
self.data[nRow,
nCol,
:] = scan.mca(i)[:]
self.incrProgressBar += 1
self.onProgress(self.incrProgressBar)
hdf5done = True
hdf.flush()
self.onEnd()
self.info["SourceType"] = "HDF5Stack1D"
self.info["McaIndex"] = 2
self.info["FileIndex"] = 0
self.info["SourceName"] = [hdf5file]
self.info["NumberOfFiles"] = 1
self.info["Size"] = 1
return