本文整理汇总了Python中PyDictionary.PyDictionary.translate方法的典型用法代码示例。如果您正苦于以下问题:Python PyDictionary.translate方法的具体用法?Python PyDictionary.translate怎么用?Python PyDictionary.translate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PyDictionary.PyDictionary
的用法示例。
在下文中一共展示了PyDictionary.translate方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Meaning
# 需要导入模块: from PyDictionary import PyDictionary [as 别名]
# 或者: from PyDictionary.PyDictionary import translate [as 别名]
class Meaning():
def __init__(self):
self.dictionary=PyDictionary()
def meaning_function(self,query,task="mn"): #task can be meaning, translate,
fo=open("meaning.txt","w")
if task == "mn" :
fo.write("Meaning :")
fo.write(str(self.dictionary.meaning(query)))
fo.write("Synonym :")
fo.write(str(self.dictionary.synonym(query)))
fo.write("Antonym :")
fo.write(str(self.dictionary.antonym(query)))
print (self.dictionary.meaning(query))
elif task =="tr":
fo.write("Translation :")
unicodedata.normalize('NFKD', self.dictionary.translate(query,'hi')).encode('ascii','ignore')
fo.write(unicodedata.normalize('NFKD', self.dictionary.translate(query,'hi')).encode('ascii','ignore')) ##Unicode to string conversion
print(self.dictionary.translate(query,'hi'))
fo.close()
def __del__(self):
os.remove("meaning.txt")
示例2: RecursiveLambdaFunctionGrowth
# 需要导入模块: from PyDictionary import PyDictionary [as 别名]
# 或者: from PyDictionary.PyDictionary import translate [as 别名]
#.........这里部分代码省略.........
number_of_cycles=0
for cycle in allsimplecycles:
number_of_cycles += 1
if number_of_cycles > 500:
break
try:
print "==================================================================="
print "Cycle :",cycle
instrumented_cycle=self.instrument_relations(cycle)
print "instrumented_cycle:",instrumented_cycle
rw_ct=self.randomwalk_lambda_function_composition_tree(instrumented_cycle)
print "Cycle Composition Tree for this cycle :",rw_ct
print "maximum_per_random_walk_graph_tensor_neuron_network_intrinsic_merit=",maximum_per_random_walk_graph_tensor_neuron_network_intrinsic_merit
print "==================================================================="
if rw_ct[1] > maximum_per_random_walk_graph_tensor_neuron_network_intrinsic_merit[1]:
maximum_per_random_walk_graph_tensor_neuron_network_intrinsic_merit=rw_ct
except KeyError:
pass
rw_ct=""
intrinsic_merit_dict={}
print "grow_lambda_function3(): Graph Tensor Neuron Network Intrinsic Merit for this text:",self.graph_tensor_neuron_network_intrinsic_merit
print "grow_lambda_function3(): Machine Translation Example - English to Kannada:"
self.machine_translation(definitiongraph, "kn")
self.korner_entropy(definitiongraph)
print "grow_lambda_function3(): Korner Entropy Intrinsic Merit for this text:",self.entropy
density = self.density(definitiongraph)
print "grow_lambda_function3(): Graph Density (Regularity Lemma):",density
bose_einstein_intrinsic_fitness=self.bose_einstein_intrinsic_fitness(definitiongraph)
print "grow_lambda_function3(): Bose-Einstein Intrinsic Fitness:",bose_einstein_intrinsic_fitness
print "grow_lambda_function3(): Maximum Per Random Walk Graph Tensor Neuron Network Intrinsic Merit :",maximum_per_random_walk_graph_tensor_neuron_network_intrinsic_merit
print "grow_lambda_function3(): Recursive Gloss Overlap Classifier classes for text:",RecursiveGlossOverlap_Classifier.RecursiveGlossOverlap_Classify(text)
intrinsic_merit_dict["graph_tensor_neuron_network_intrinsic_merit"]=self.graph_tensor_neuron_network_intrinsic_merit
intrinsic_merit_dict["maximum_per_random_walk_graph_tensor_neuron_network_intrinsic_merit"]=maximum_per_random_walk_graph_tensor_neuron_network_intrinsic_merit
intrinsic_merit_dict["korner_entropy"]=self.entropy
intrinsic_merit_dict["density"]=density
intrinsic_merit_dict["bose_einstein_intrinsic_fitness"]=bose_einstein_intrinsic_fitness
intrinsic_merit_dict["recursive_gloss_overlap_intrinsic_merit"]=definitiongraph_merit[1]
intrinsic_merit_dict["empath_sentiment"]=sentiment
write_dot(definitiongraph,"RecursiveLambdaFunctionGrowth.dot")
self.graph_tensor_neuron_network_intrinsic_merit=1.0
print "intrinsic_merit_dict:",intrinsic_merit_dict
return intrinsic_merit_dict
def machine_translation(self, definitiongraph, languagecode):
nodes=definitiongraph.nodes()
edges=definitiongraph.edges()
translationgraph=nx.DiGraph()
for k, v in edges:
ktrans=self.dictionary.translate(k,languagecode)
vtrans=self.dictionary.translate(v,languagecode)
print "k=",k,",v=",v,",ktrans=",ktrans,",vtrans=",vtrans
translationgraph.add_edge(ktrans, vtrans)
translationgraph.add_edge(vtrans, ktrans)
print "TextGraph Translated to ",languagecode,":",translationgraph
#KornerEntropy(G) = minimum [- sum_v_in_V(G) {1/|V(G)| * log(Pr[v in Y])}] for each independent set Y
def korner_entropy(self, definitiongraph):
nodes=definitiongraph.nodes()
stable_sets=[]
for v in nodes:
stable_sets.append(nx.maximal_independent_set(definitiongraph.to_undirected(),[v]))
print "korner_entropy(): Stable Independent Sets:",stable_sets
entropy=0.0
prob_v_in_stableset=0.0
for v in nodes:
for s in stable_sets:
if v in s:
prob_v_in_stableset=math.log(0.999999)
else:
prob_v_in_stableset=math.log(0.000001)
entropy += (-1.0) * float(1.0/len(nodes)) * prob_v_in_stableset
if entropy < self.entropy:
self.entropy = entropy
entropy=0.0
return self.entropy
#Graph Density - Regularity Lemma
def density(self, definitiongraph):
dty=nx.classes.function.density(definitiongraph)
return dty
#Bose-Einstein Bianconi intrinsic fitness
def bose_einstein_intrinsic_fitness(self, definitiongraph):
#Bose-Einstein fitness presently assumes energy of a document vertex in a link graph to be
#the entropy or extent of chaos in the definition graph of document text
#This has to be replaced by a more suitable fitness measure
#Bose-Einstein Condensation function value is hardcoded
entropy = self.korner_entropy(definitiongraph)
becf = 0.3
bei_fitness = math.pow(2, -1 * becf * entropy)
return bei_fitness