当前位置: 首页>>代码示例>>Python>>正文


Python TimeVariable.parse方法代码示例

本文整理汇总了Python中Orange.data.TimeVariable.parse方法的典型用法代码示例。如果您正苦于以下问题:Python TimeVariable.parse方法的具体用法?Python TimeVariable.parse怎么用?Python TimeVariable.parse使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Orange.data.TimeVariable的用法示例。


在下文中一共展示了TimeVariable.parse方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_have_date

# 需要导入模块: from Orange.data import TimeVariable [as 别名]
# 或者: from Orange.data.TimeVariable import parse [as 别名]
 def test_have_date(self):
     var = TimeVariable('time')
     ts = var.parse('1937-08-02')  # parse date
     self.assertEqual(var.repr_val(ts), '1937-08-02')
     ts = var.parse('16:20')  # parse time
     # observe have datetime
     self.assertEqual(var.repr_val(ts), '1970-01-01 16:20:00')
开发者ID:acopar,项目名称:orange3,代码行数:9,代码来源:test_variable.py

示例2: test_parse_utc

# 需要导入模块: from Orange.data import TimeVariable [as 别名]
# 或者: from Orange.data.TimeVariable import parse [as 别名]
 def test_parse_utc(self):
     var = TimeVariable('time')
     datestr, offset = '2015-10-18 22:48:20', '+0200'
     ts1 = var.parse(datestr + offset)
     self.assertEqual(var.repr_val(ts1), datestr + offset)
     # Once a value is without a TZ, all the values lose it
     ts2 = var.parse(datestr)
     self.assertEqual(var.repr_val(ts2), datestr)
     self.assertEqual(var.repr_val(ts1), '2015-10-18 20:48:20')
开发者ID:acopar,项目名称:orange3,代码行数:11,代码来源:test_variable.py

示例3: guess_data_type

# 需要导入模块: from Orange.data import TimeVariable [as 别名]
# 或者: from Orange.data.TimeVariable import parse [as 别名]
def guess_data_type(orig_values, namask=None):
    """
    Use heuristics to guess data type.
    """
    valuemap, values = None, orig_values
    is_discrete = is_discrete_values(orig_values)
    if is_discrete:
        valuemap = sorted(is_discrete)
        coltype = DiscreteVariable
    else:
        # try to parse as float
        orig_values = np.asarray(orig_values)
        if namask is None:
            namask = isnastr(orig_values)
        values = np.empty_like(orig_values, dtype=float)
        values[namask] = np.nan
        try:
            np.copyto(values, orig_values, where=~namask, casting="unsafe")
        except ValueError:
            tvar = TimeVariable('_')
            try:
                values[~namask] = [tvar.parse(i) for i in orig_values[~namask]]
            except ValueError:
                coltype = StringVariable
                # return original_values
                values = orig_values
            else:
                coltype = TimeVariable
        else:
            coltype = ContinuousVariable
    return valuemap, values, coltype
开发者ID:lanzagar,项目名称:orange3,代码行数:33,代码来源:io.py

示例4: test_parse_repr

# 需要导入模块: from Orange.data import TimeVariable [as 别名]
# 或者: from Orange.data.TimeVariable import parse [as 别名]
 def test_parse_repr(self):
     for datestr, timestamp, outstr in self.TESTS:
         var = TimeVariable('time')
         ts = var.parse(datestr)
         if not np.isnan(ts):
             self.assertEqual(ts, timestamp, msg=datestr)
         self.assertEqual(var.repr_val(ts), outstr, msg=datestr)
开发者ID:JackWangCUMT,项目名称:orange3,代码行数:9,代码来源:test_variable.py

示例5: _date_to_iso

# 需要导入模块: from Orange.data import TimeVariable [as 别名]
# 或者: from Orange.data.TimeVariable import parse [as 别名]
def _date_to_iso(date):
    possible_date_formats = [
        '%Y %b %d',
        '%Y %b',
        '%Y',
    ]

    season_mapping = {
        'fall': 'Sep',
        'autumn': 'Sep',
        'winter': 'Dec',
        'spring': 'Mar',
        'summer': 'Jun',
    }

    date = date.lower()
    # Seasons to their respective months.
    for season, month in season_mapping.items():
        date = date.replace(season, month)
    date = date.split('-')[0]  # 2015 Sep-Dec --> 2015 Sep

    time_var = TimeVariable()
    for date_format in possible_date_formats:
        try:
            date_string = datetime.strptime(
                    date, date_format
            ).date().isoformat()
            return time_var.parse(date_string)
        except ValueError:
            continue  # Try the next format.

    warnings.warn(
            'Could not parse "{}" into a date.'.format(date),
            RuntimeWarning
    )
    return time_var.parse(np.nan)
开发者ID:biolab,项目名称:orange3-text,代码行数:38,代码来源:pubmed.py

示例6: guess_data_type

# 需要导入模块: from Orange.data import TimeVariable [as 别名]
# 或者: from Orange.data.TimeVariable import parse [as 别名]
def guess_data_type(orig_values):
    """
    Use heuristics to guess data type.
    """
    valuemap, values = [], orig_values
    is_discrete = is_discrete_values(orig_values)
    if is_discrete:
        valuemap = sorted(is_discrete)
        coltype = DiscreteVariable
    else:
        try:
            values = [float(i) for i in orig_values]
        except ValueError:
            tvar = TimeVariable('_')
            try:
                values = [tvar.parse(i) for i in orig_values]
            except ValueError:
                coltype = StringVariable
            else:
                coltype = TimeVariable
        else:
            coltype = ContinuousVariable
    return valuemap, values, coltype
开发者ID:cheral,项目名称:orange3,代码行数:25,代码来源:io.py

示例7: test_parse_invalid

# 需要导入模块: from Orange.data import TimeVariable [as 别名]
# 或者: from Orange.data.TimeVariable import parse [as 别名]
 def test_parse_invalid(self):
     var = TimeVariable('var')
     with self.assertRaises(ValueError):
         var.parse('123')
开发者ID:acopar,项目名称:orange3,代码行数:6,代码来源:test_variable.py

示例8: test_parse_timestamp

# 需要导入模块: from Orange.data import TimeVariable [as 别名]
# 或者: from Orange.data.TimeVariable import parse [as 别名]
 def test_parse_timestamp(self):
     var = TimeVariable("time")
     datestr = str(datetime(2016, 6, 14, 23, 8, tzinfo=timezone.utc).timestamp())
     ts1 = var.parse(datestr)
     self.assertEqual(var.repr_val(ts1), '2016-06-14 23:08:00')
开发者ID:acopar,项目名称:orange3,代码行数:7,代码来源:test_variable.py

示例9: data_table

# 需要导入模块: from Orange.data import TimeVariable [as 别名]
# 或者: from Orange.data.TimeVariable import parse [as 别名]
    def data_table(self, data, headers=None):
        """
        Return Orange.data.Table given rows of `headers` (iterable of iterable)
        and rows of `data` (iterable of iterable; if ``numpy.ndarray``, might
        as well **have it sorted column-major**, e.g. ``order='F'``).

        Basically, the idea of subclasses is to produce those two iterables,
        however they might.

        If `headers` is not provided, the header rows are extracted from `data`,
        assuming they precede it.
        """
        if not headers:
            headers, data = self.parse_headers(data)

        # Consider various header types (single-row, two-row, three-row, none)
        if 3 == len(headers):
            names, types, flags = map(list, headers)
        else:
            if 1 == len(headers):
                HEADER1_FLAG_SEP = '#'
                # First row format either:
                #   1) delimited column names
                #   2) -||- with type and flags prepended, separated by #,
                #      e.g. d#sex,c#age,cC#IQ
                _flags, names = zip(*[i.split(HEADER1_FLAG_SEP, 1) if HEADER1_FLAG_SEP in i else ('', i)
                                      for i in headers[0]])
                names = list(names)
            elif 2 == len(headers):
                names, _flags = map(list, headers)
            else:
                # Use heuristics for everything
                names, _flags = [], []
            types = [''.join(filter(str.isupper, flag)).lower() for flag in _flags]
            flags = [Flags.join(filter(str.islower, flag)) for flag in _flags]

        # Determine maximum row length
        rowlen = max(map(len, (names, types, flags)))

        def _equal_length(lst):
            lst.extend(['']*(rowlen - len(lst)))
            return lst

        # Ensure all data is of equal width in a column-contiguous array
        data = np.array([_equal_length(list(row)) for row in data if any(row)],
                        copy=False, dtype=object, order='F')

        # Data may actually be longer than headers were
        try: rowlen = data.shape[1]
        except IndexError: pass
        else:
            for lst in (names, types, flags):
                _equal_length(lst)

        NAMEGEN = namegen('Feature ', 1)
        Xcols, attrs = [], []
        Mcols, metas = [], []
        Ycols, clses = [], []
        Wcols = []

        # Iterate through the columns
        for col in range(rowlen):
            flag = Flags(Flags.split(flags[col]))
            if flag.i: continue

            type_flag = types and types[col].strip()
            try:
                orig_values = [np.nan if i in MISSING_VALUES else i
                               for i in (i.strip() for i in data[:, col])]
            except IndexError:
                # No data instances leads here
                orig_values = []
                # In this case, coltype could be anything. It's set as-is
                # only to satisfy test_table.TableTestCase.test_append
                coltype = DiscreteVariable

            coltype_kwargs = {}
            valuemap = []
            values = orig_values

            if type_flag in StringVariable.TYPE_HEADERS:
                coltype = StringVariable
            elif type_flag in ContinuousVariable.TYPE_HEADERS:
                coltype = ContinuousVariable
                try:
                    values = [float(i) for i in orig_values]
                except ValueError:
                    for row, num in enumerate(orig_values):
                        try: float(num)
                        except ValueError: break
                    raise ValueError('Non-continuous value in (1-based) '
                                     'line {}, column {}'.format(row + len(headers) + 1,
                                                                 col + 1))

            elif type_flag in TimeVariable.TYPE_HEADERS:
                coltype = TimeVariable

            elif (type_flag in DiscreteVariable.TYPE_HEADERS or
                  _RE_DISCRETE_LIST.match(type_flag)):
                if _RE_DISCRETE_LIST.match(type_flag):
#.........这里部分代码省略.........
开发者ID:BlazZupan,项目名称:orange3,代码行数:103,代码来源:io.py


注:本文中的Orange.data.TimeVariable.parse方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。