本文整理汇总了Python中Orange.data.StringVariable类的典型用法代码示例。如果您正苦于以下问题:Python StringVariable类的具体用法?Python StringVariable怎么用?Python StringVariable使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了StringVariable类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: capture_image
def capture_image(self):
cap = self.cap
for i in range(3): # Need some warmup time; use the last frame
success, frame = cap.read()
if success:
self.Error.no_webcam.clear()
else:
self.Error.no_webcam()
return
def normalize(name):
return ''.join(ch for ch in unicodedata.normalize('NFD', name.replace(' ', '_'))
if unicodedata.category(ch) in 'LuLlPcPd')
timestamp = datetime.now().strftime('%Y%m%d%H%M%S.%f')
image_title, self.image_title = self.image_title or self.DEFAULT_TITLE, ''
normed_name = normalize(image_title)
for image, suffix, output in (
(frame, '', self.Output.SNAPSHOT),
(self.clip_aspect_frame(frame), '_aspect', self.Output.SNAPSHOT_ASPECT)):
path = os.path.join(
self.IMAGE_DIR, '{normed_name}_{timestamp}{suffix}.png'.format(**locals()))
cv2.imwrite(path,
# imwrite expects original bgr image, so this is reversed
self.bgr2rgb(image) if self.avatar_filter else image)
image_var = StringVariable('image')
image_var.attributes['type'] = 'image'
table = Table.from_numpy(Domain([], metas=[StringVariable('name'), image_var]),
np.empty((1, 0)), metas=np.array([[image_title, path]]))
self.send(output, table)
self.snapshot_flash = 80
示例2: concatenate_data
def concatenate_data(tables, filenames, label):
domain, xs = domain_union_for_spectra(tables)
ntables = [(table if isinstance(table, Table) else table[2]).transform(domain)
for table in tables]
data = type(ntables[0]).concatenate(ntables, axis=0)
source_var = StringVariable.make("Filename")
label_var = StringVariable.make("Label")
# add other variables
xs_atts = tuple([ContinuousVariable.make("%f" % f) for f in xs])
domain = Domain(xs_atts + domain.attributes, domain.class_vars,
domain.metas + (source_var, label_var))
data = data.transform(domain)
# fill in spectral data
xs_sind = np.argsort(xs)
xs_sorted = xs[xs_sind]
pos = 0
for table in tables:
t = table if isinstance(table, Table) else table[2]
if not isinstance(table, Table):
indices = xs_sind[np.searchsorted(xs_sorted, table[0])]
data.X[pos:pos+len(t), indices] = table[1]
pos += len(t)
data[:, source_var] = np.array(list(
chain(*(repeat(fn, len(table))
for fn, table in zip(filenames, ntables)))
)).reshape(-1, 1)
data[:, label_var] = np.array(list(
chain(*(repeat(label, len(table))
for fn, table in zip(filenames, ntables)))
)).reshape(-1, 1)
return data
示例3: test_nyt_corpus_domain_generation
def test_nyt_corpus_domain_generation(self):
corpus = self.nyt.run_query('slovenia')
meta_vars = [StringVariable.make(field) for field in NYT_TEXT_FIELDS] + \
[StringVariable.make('pub_date'), StringVariable.make('country')]
self.assertEqual(len(meta_vars), len(corpus.domain.metas))
self.assertEqual(len(corpus.Y), 10)
示例4: test_val
def test_val(self):
a = StringVariable("a")
self.assertEqual(a.to_val(None), "")
self.assertEqual(a.str_val(Unknown), "?")
self.assertEqual(a.str_val(Value(a, None)), "None")
self.assertEqual(a.repr_val(Value(a, "foo")), '"foo"')
示例5: test_to_val
def test_to_val(self):
string_var = StringVariable("x")
self.assertEqual(string_var.to_val("foo"), "foo")
self.assertEqual(string_var.to_val(42), "42")
cont_var = ContinuousVariable("x")
self.assertTrue(math.isnan(cont_var.to_val("?")))
self.assertTrue(math.isnan(Unknown))
var = Variable("x")
self.assertEqual(var.to_val("x"), "x")
示例6: test_proxy_has_separate_attributes
def test_proxy_has_separate_attributes(self):
image = StringVariable("image")
image1 = image.make_proxy()
image2 = image1.make_proxy()
image.attributes["origin"] = "a"
image1.attributes["origin"] = "b"
image2.attributes["origin"] = "c"
self.assertEqual(image.attributes["origin"], "a")
self.assertEqual(image1.attributes["origin"], "b")
self.assertEqual(image2.attributes["origin"], "c")
示例7: create_domain
def create_domain(at, cl, metas):
if OR3:
return Orange.data.Domain(at, cl, metas=metas)
else:
domain = Orange.data.Domain(at, cl)
if metas:
if isinstance(metas, dict):
metas = sorted(metas.items())
else:
metas = zip([ StringVariable.new_meta_id() for _ in metas ], metas)
domain.add_metas(dict((StringVariable.new_meta_id(), ma) for mi, ma in metas))
return domain
示例8: parse_record_json
def parse_record_json(record, includes_metadata):
"""
Parses the JSON representation of the record returned by the New York Times Article API.
:param record: The JSON representation of the query's results.
:param includes_metadata: The flags that determine which fields to include.
:return: A list of articles parsed into documents and a list of the
corresponding metadata, joined in a tuple.
"""
text_fields = ["headline", "lead_paragraph", "snippet", "abstract", "keywords"]
documents = []
class_values = []
meta_vars = [StringVariable.make(field) for field, flag in zip(text_fields, includes_metadata) if flag]
# Also add pub_date and glocation.
meta_vars += [StringVariable.make("pub_date"), StringVariable.make("country")]
metadata = np.empty((0, len(meta_vars)), dtype=object)
for doc in record["response"]["docs"]:
string_document = ""
metas_row = []
for field, flag in zip(text_fields, includes_metadata):
if flag and field in doc:
field_value = ""
if isinstance(doc[field], dict):
field_value = " ".join([val for val in doc[field].values() if val])
elif isinstance(doc[field], list):
field_value = " ".join([kw["value"] for kw in doc[field] if kw])
else:
if doc[field]:
field_value = doc[field]
string_document += field_value
metas_row.append(field_value)
# Add the pub_date.
field_value = ""
if "pub_date" in doc and doc["pub_date"]:
field_value = doc["pub_date"]
metas_row.append(field_value)
# Add the glocation.
metas_row.append(",".join([kw["value"] for kw in doc["keywords"] if kw["name"] == "glocations"]))
# Add the section_name.
class_val = ""
if "section_name" in doc and doc["section_name"]:
class_val = doc["section_name"]
documents.append(string_document)
class_values.append(class_val)
metadata = np.vstack((metadata, np.array(metas_row)))
return documents, metadata, meta_vars, class_values
示例9: generate_corpus
def generate_corpus(self, url_list):
"""
generate new corpus with values requested by user
:param url_list:
:return: corpus
"""
new_table=None
text_includes_params = [self.includes_article, self.includes_author, self.includes_date,
self.includes_title, self.includes_web_url]
if True not in text_includes_params:
self.warning(1, "You must select at least one text field.")
return
required_text_fields = [incl_field for yes, incl_field in zip(text_includes_params, ARTICLE_TEXT_FIELDS) if yes]
meta_vars = [StringVariable.make(field) for field in required_text_fields]
metadata=[]
for url in url_list:
info, is_cached =_get_info(url)
final_fields = [incl_field for yes, incl_field in zip(text_includes_params, info) if yes]
metadata.append(final_fields)
metadata = np.array(metadata, dtype=object)
metas=metadata
domain = Domain([], class_vars=None, metas=(meta_vars))
new_table = Corpus(None, None, metadata, domain, meta_vars)
self.output_corpus=new_table
self.send("Corpus",self.output_corpus)
示例10: _corpus_from_records
def _corpus_from_records(records, includes_metadata):
"""Receives PubMed records and transforms them into a corpus.
Args:
records (list): A list of PubMed entries.
includes_metadata (list): A list of text fields to include.
Returns:
corpus: The output Corpus.
"""
meta_values, class_values = _records_to_corpus_entries(
records,
includes_metadata=includes_metadata
)
meta_vars = []
for field_name, _ in includes_metadata:
if field_name == 'pub_date':
meta_vars.append(TimeVariable(field_name))
else:
meta_vars.append(StringVariable.make(field_name))
class_vars = [
DiscreteVariable('section_name', values=list(set(class_values)))
]
domain = Domain([], class_vars=class_vars, metas=meta_vars)
Y = np.array([class_vars[0].to_val(cv) for cv in class_values])[:, None]
return Corpus(domain=domain, Y=Y, metas=meta_values)
示例11: _create_corpus
def _create_corpus(self):
corpus = None
names = ["name", "path", "content"]
data = []
category_data = []
text_categories = list(set(t.category for t in self._text_data))
values = list(set(text_categories))
category_var = DiscreteVariable.make("category", values=values)
for textdata in self._text_data:
data.append(
[textdata.name,
textdata.path,
textdata.content]
)
category_data.append(category_var.to_val(textdata.category))
if len(text_categories) > 1:
category_data = np.array(category_data)
else:
category_var = []
category_data = np.empty((len(data), 0))
domain = Domain(
[], category_var, [StringVariable.make(name) for name in names]
)
domain["name"].attributes["title"] = True
data = np.array(data, dtype=object)
if len(data):
corpus = Corpus(domain,
Y=category_data,
metas=data,
text_features=[domain.metas[2]])
return corpus
示例12: create_domain
def create_domain(at, cl, metas):
if OR3:
return Orange.data.Domain(at, cl, metas=metas)
else:
domain = Orange.data.Domain(at, cl)
if metas:
domain.add_metas(dict((StringVariable.new_meta_id(), ma) for ma in metas))
return domain
示例13: create_domain
def create_domain(at, cl, metas):
if OR3:
return Orange.data.Domain(at, cl, metas=metas)
else:
domain = Orange.data.Domain(at, cl)
if metas:
# add metas in the reverse order (because meta ids are always decreasing)
# this allows us to pass metas in the same order to create_table
metas = zip([ StringVariable.new_meta_id() for _ in metas ], reversed(metas))
domain.add_metas(dict(metas))
return domain
示例14: _generate_corpus
def _generate_corpus(records, required_text_fields):
"""
Generates a corpus from the input NYT records.
:param records: The input NYT records.
:type records: list
:param required_text_fields: A list of the available NYT text fields.
:type required_text_fields: list
:return: :class: `orangecontrib.text.corpus.Corpus`
"""
metas, class_values = _parse_record_json(records, required_text_fields)
documents = []
for doc in metas:
documents.append(" ".join([d for d in doc if d is not None]).strip())
# Create domain.
meta_vars = [StringVariable.make(field) for field in required_text_fields]
meta_vars += [StringVariable.make("pub_date"), StringVariable.make("country")]
class_vars = [DiscreteVariable("section_name", values=list(set(class_values)))]
domain = Domain([], class_vars=class_vars, metas=meta_vars)
Y = np.array([class_vars[0].to_val(cv) for cv in class_values])[:, None]
return Corpus(documents, None, Y, metas, domain)
示例15: test_domaineditor_makes_variables
def test_domaineditor_makes_variables(self):
# Variables created with domain editor should be interchangeable
# with variables read from file.
dat = """V0\tV1\nc\td\n\n1.0\t2"""
v0 = StringVariable.make("V0")
v1 = ContinuousVariable.make("V1")
with named_file(dat, suffix=".tab") as filename:
self.open_dataset(filename)
model = self.widget.domain_editor.model()
model.setData(model.createIndex(0, 1), "text", Qt.EditRole)
model.setData(model.createIndex(1, 1), "numeric", Qt.EditRole)
self.widget.apply_button.click()
data = self.get_output(self.widget.Outputs.data)
self.assertEqual(data.domain["V0"], v0)
self.assertEqual(data.domain["V1"], v1)