当前位置: 首页>>代码示例>>Python>>正文


Python DiscreteVariable.make方法代码示例

本文整理汇总了Python中Orange.data.DiscreteVariable.make方法的典型用法代码示例。如果您正苦于以下问题:Python DiscreteVariable.make方法的具体用法?Python DiscreteVariable.make怎么用?Python DiscreteVariable.make使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Orange.data.DiscreteVariable的用法示例。


在下文中一共展示了DiscreteVariable.make方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_colors

# 需要导入模块: from Orange.data import DiscreteVariable [as 别名]
# 或者: from Orange.data.DiscreteVariable import make [as 别名]
    def test_colors(self):
        var = DiscreteVariable.make("a", values=["F", "M"])
        self.assertIsNone(var._colors)
        self.assertEqual(var.colors.shape, (2, 3))
        self.assertIs(var._colors, var.colors)
        self.assertEqual(var.colors.shape, (2, 3))
        self.assertFalse(var.colors.flags.writeable)

        var.colors = np.arange(6).reshape((2, 3))
        np.testing.assert_almost_equal(var.colors, [[0, 1, 2], [3, 4, 5]])
        self.assertFalse(var.colors.flags.writeable)
        with self.assertRaises(ValueError):
            var.colors[0] = [42, 41, 40]
        var.set_color(0, [42, 41, 40])
        np.testing.assert_almost_equal(var.colors, [[42, 41, 40], [3, 4, 5]])

        var = DiscreteVariable.make("x", values=["A", "B"])
        var.attributes["colors"] = ['#0a0b0c', '#0d0e0f']
        np.testing.assert_almost_equal(var.colors, [[10, 11, 12], [13, 14, 15]])

        # Test ncolors adapts to nvalues
        var = DiscreteVariable.make('foo', values=['d', 'r'])
        self.assertEqual(len(var.colors), 2)
        var.add_value('e')
        self.assertEqual(len(var.colors), 3)
        user_defined = (0, 0, 0)
        var.set_color(2, user_defined)
        var.add_value('k')
        self.assertEqual(len(var.colors), 4)
        np.testing.assert_array_equal(var.colors[2], user_defined)
开发者ID:acopar,项目名称:orange3,代码行数:32,代码来源:test_variable.py

示例2: test_repr

# 需要导入模块: from Orange.data import DiscreteVariable [as 别名]
# 或者: from Orange.data.DiscreteVariable import make [as 别名]
    def test_repr(self):
        var = DiscreteVariable.make("a", values=["F", "M"])
        self.assertEqual(
            repr(var),
            "DiscreteVariable(name='a', values=['F', 'M'])")
        var.ordered = True
        self.assertEqual(
            repr(var),
            "DiscreteVariable(name='a', values=['F', 'M'], ordered=True)")

        var = DiscreteVariable.make("a", values="1234567")
        self.assertEqual(
            repr(var),
            "DiscreteVariable(name='a', values=['1', '2', '3', '4', '5', '6', '7'])")
开发者ID:PrimozGodec,项目名称:orange3,代码行数:16,代码来源:test_variable.py

示例3: _create_corpus

# 需要导入模块: from Orange.data import DiscreteVariable [as 别名]
# 或者: from Orange.data.DiscreteVariable import make [as 别名]
    def _create_corpus(self):
        corpus = None
        names = ["name", "path", "content"]
        data = []
        category_data = []
        text_categories = list(set(t.category for t in self._text_data))
        values = list(set(text_categories))
        category_var = DiscreteVariable.make("category", values=values)
        for textdata in self._text_data:
            data.append(
                [textdata.name,
                 textdata.path,
                 textdata.content]
            )
            category_data.append(category_var.to_val(textdata.category))
        if len(text_categories) > 1:
            category_data = np.array(category_data)
        else:
            category_var = []
            category_data = np.empty((len(data), 0))
        domain = Domain(
            [], category_var, [StringVariable.make(name) for name in names]
        )
        domain["name"].attributes["title"] = True
        data = np.array(data, dtype=object)
        if len(data):
            corpus = Corpus(domain,
                            Y=category_data,
                            metas=data,
                            text_features=[domain.metas[2]])

        return corpus
开发者ID:s-alexey,项目名称:orange3-text,代码行数:34,代码来源:import_documents.py

示例4: test_colors

# 需要导入模块: from Orange.data import DiscreteVariable [as 别名]
# 或者: from Orange.data.DiscreteVariable import make [as 别名]
    def test_colors(self):
        var = DiscreteVariable.make("a", values=["F", "M"])
        self.assertIsNone(var._colors)
        self.assertEqual(var.colors.shape, (2, 3))
        self.assertIs(var._colors, var.colors)
        self.assertEqual(var.colors.shape, (2, 3))
        self.assertFalse(var.colors.flags.writeable)

        var.colors = np.arange(6).reshape((2, 3))
        np.testing.assert_almost_equal(var.colors, [[0, 1, 2], [3, 4, 5]])
        self.assertFalse(var.colors.flags.writeable)
        with self.assertRaises(ValueError):
            var.colors[0] = [42, 41, 40]
        var.set_color(0, [42, 41, 40])
        np.testing.assert_almost_equal(var.colors, [[42, 41, 40], [3, 4, 5]])

        var = DiscreteVariable.make("x", values=["A", "B"])
        var.attributes["colors"] = ['#0a0b0c', '#0d0e0f']
        np.testing.assert_almost_equal(var.colors, [[10, 11, 12], [13, 14, 15]])
开发者ID:MPOWER4RU,项目名称:orange3,代码行数:21,代码来源:test_variable.py

示例5: test_repr

# 需要导入模块: from Orange.data import DiscreteVariable [as 别名]
# 或者: from Orange.data.DiscreteVariable import make [as 别名]
    def test_repr(self):
        var = DiscreteVariable.make("a", values=["F", "M"])
        self.assertEqual(
            repr(var),
            "DiscreteVariable('a', values=['F', 'M'])")
        var.base_value = 1
        self.assertEqual(
            repr(var),
            "DiscreteVariable('a', values=['F', 'M'], base_value=1)")
        var.ordered = True
        self.assertEqual(
            repr(var),
            "DiscreteVariable('a', values=['F', 'M'], "
            "ordered=True, base_value=1)")

        var = DiscreteVariable.make("a", values="1234567")
        self.assertEqual(
            repr(var),
            "DiscreteVariable('a', values=['1', '2', '3', '4', '5', ...])")
开发者ID:MPOWER4RU,项目名称:orange3,代码行数:21,代码来源:test_variable.py

示例6: _guess_variable

# 需要导入模块: from Orange.data import DiscreteVariable [as 别名]
# 或者: from Orange.data.DiscreteVariable import make [as 别名]
    def _guess_variable(self, field_name, field_metadata, inspect_table):
        type_code = field_metadata[0]

        FLOATISH_TYPES = (700, 701, 1700)  # real, float8, numeric
        INT_TYPES = (20, 21, 23)  # bigint, int, smallint
        CHAR_TYPES = (25, 1042, 1043,)  # text, char, varchar
        BOOLEAN_TYPES = (16,)  # bool
        DATE_TYPES = (1082, 1114, 1184, )  # date, timestamp, timestamptz
        # time, timestamp, timestamptz, timetz
        TIME_TYPES = (1083, 1114, 1184, 1266,)

        if type_code in FLOATISH_TYPES:
            return ContinuousVariable.make(field_name)

        if type_code in TIME_TYPES + DATE_TYPES:
            tv = TimeVariable.make(field_name)
            tv.have_date |= type_code in DATE_TYPES
            tv.have_time |= type_code in TIME_TYPES
            return tv

        if type_code in INT_TYPES:  # bigint, int, smallint
            if inspect_table:
                values = self.get_distinct_values(field_name, inspect_table)
                if values:
                    return DiscreteVariable.make(field_name, values)
            return ContinuousVariable.make(field_name)

        if type_code in BOOLEAN_TYPES:
            return DiscreteVariable.make(field_name, ['false', 'true'])

        if type_code in CHAR_TYPES:
            if inspect_table:
                values = self.get_distinct_values(field_name, inspect_table)
                # remove trailing spaces
                values = [v.rstrip() for v in values]
                if values:
                    return DiscreteVariable.make(field_name, values)

        return StringVariable.make(field_name)
开发者ID:thocevar,项目名称:orange3,代码行数:41,代码来源:postgres.py

示例7: test_find_compatible_ordered

# 需要导入模块: from Orange.data import DiscreteVariable [as 别名]
# 或者: from Orange.data.DiscreteVariable import make [as 别名]
    def test_find_compatible_ordered(self):
        abc = DiscreteVariable("abc", values="abc", ordered=True)

        find_comp = DiscreteVariable._find_compatible

        self.assertIsNone(find_comp("abc"))
        self.assertIsNone(find_comp("abc", list("abc")))
        self.assertIs(find_comp("abc", ordered=True), abc)
        self.assertIs(find_comp("abc", ["a"], ordered=True), abc)
        self.assertIs(find_comp("abc", ["a", "b"], ordered=True), abc)
        self.assertIs(find_comp("abc", ["a", "b", "c"], ordered=True), abc)
        self.assertIs(find_comp("abc", ["a", "b", "c", "d"], ordered=True), abc)

        abd = DiscreteVariable.make(
            "abc", values=["a", "d", "b"], ordered=True)
        self.assertIsNot(abc, abd)

        abc_un = DiscreteVariable.make("abc", values=["a", "b", "c"])
        self.assertIsNot(abc_un, abc)

        self.assertIs(
            find_comp("abc", values=["a", "d", "b"], ordered=True), abd)
        self.assertIs(find_comp("abc", values=["a", "b", "c"]), abc_un)
开发者ID:acopar,项目名称:orange3,代码行数:25,代码来源:test_variable.py

示例8: test_unpickle

# 需要导入模块: from Orange.data import DiscreteVariable [as 别名]
# 或者: from Orange.data.DiscreteVariable import make [as 别名]
 def test_unpickle(self):
     d1 = DiscreteVariable("A", values=["two", "one"])
     s = pickle.dumps(d1)
     d2 = DiscreteVariable.make("A", values=["one", "two", "three"])
     d2_values = tuple(d2.values)
     d1c = pickle.loads(s)
     # See: gh-3238
     # The unpickle reconstruction picks an existing variable (d2), on which
     # __setstate__ or __dict__.update is called
     self.assertSequenceEqual(d2.values, d2_values)
     self.assertSequenceEqual(d1c.values, d1.values)
     s = pickle.dumps(d2)
     DiscreteVariable._clear_all_caches()  # [comment redacted]
     d1 = DiscreteVariable("A", values=["one", "two"])
     d2 = pickle.loads(s)
     self.assertSequenceEqual(d2.values, ["two", "one", "three"])
开发者ID:acopar,项目名称:orange3,代码行数:18,代码来源:test_variable.py

示例9: test_val_from_str

# 需要导入模块: from Orange.data import DiscreteVariable [as 别名]
# 或者: from Orange.data.DiscreteVariable import make [as 别名]
 def test_val_from_str(self):
     var = DiscreteVariable.make("a", values=["F", "M"])
     self.assertTrue(math.isnan(var.to_val(None)))
     self.assertEqual(var.to_val(1), 1)
开发者ID:acopar,项目名称:orange3,代码行数:6,代码来源:test_variable.py

示例10: test_make

# 需要导入模块: from Orange.data import DiscreteVariable [as 别名]
# 或者: from Orange.data.DiscreteVariable import make [as 别名]
 def test_make(self):
     var = DiscreteVariable.make("a", values=["F", "M"])
     self.assertIsInstance(var, DiscreteVariable)
     self.assertEqual(var.name, "a")
     self.assertEqual(var.values, ["F", "M"])
开发者ID:acopar,项目名称:orange3,代码行数:7,代码来源:test_variable.py

示例11: Domain

# 需要导入模块: from Orange.data import DiscreteVariable [as 别名]
# 或者: from Orange.data.DiscreteVariable import make [as 别名]
item_summary_df[item_summary_df.total_perc <= 0.5].shape


# In[13]:


item_summary_df[item_summary_df.total_perc <= 0.5]


# # Construct Orange Table 

# In[16]:


input_assoc_rules = grocery_df
domain_grocery = Domain([DiscreteVariable.make(name=item,values=['0', '1']) for item in input_assoc_rules.columns])
data_gro_1 = Orange.data.Table.from_numpy(domain=domain_grocery,  X=input_assoc_rules.as_matrix(),Y= None)


# # Prune Dataset for frequently purchased items

# In[2]:


def prune_dataset(input_df, length_trans = 2, total_sales_perc = 0.5, start_item = None, end_item = None):
    if 'total_items' in input_df.columns:
        del(input_df['total_items'])
    item_count = input_df.sum().sort_values(ascending = False).reset_index()
    total_items = sum(input_df.sum().sort_values(ascending = False))
    item_count.rename(columns={item_count.columns[0]:'item_name',item_count.columns[1]:'item_count'}, inplace=True)
    if not start_item and not end_item: 
开发者ID:Zoery,项目名称:practical-machine-learning-with-python,代码行数:33,代码来源:cross_selling.py


注:本文中的Orange.data.DiscreteVariable.make方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。