本文整理汇总了Python中Orange.data.ContinuousVariable.make方法的典型用法代码示例。如果您正苦于以下问题:Python ContinuousVariable.make方法的具体用法?Python ContinuousVariable.make怎么用?Python ContinuousVariable.make使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Orange.data.ContinuousVariable
的用法示例。
在下文中一共展示了ContinuousVariable.make方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_make
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def test_make(self):
ContinuousVariable._clear_cache()
age1 = ContinuousVariable.make("age")
age2 = ContinuousVariable.make("age")
age3 = ContinuousVariable("age")
self.assertEqual(age1, age2)
self.assertNotEqual(age1, age3)
示例2: concatenate_data
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def concatenate_data(tables, filenames, label):
domain, xs = domain_union_for_spectra(tables)
ntables = [(table if isinstance(table, Table) else table[2]).transform(domain)
for table in tables]
data = type(ntables[0]).concatenate(ntables, axis=0)
source_var = StringVariable.make("Filename")
label_var = StringVariable.make("Label")
# add other variables
xs_atts = tuple([ContinuousVariable.make("%f" % f) for f in xs])
domain = Domain(xs_atts + domain.attributes, domain.class_vars,
domain.metas + (source_var, label_var))
data = data.transform(domain)
# fill in spectral data
xs_sind = np.argsort(xs)
xs_sorted = xs[xs_sind]
pos = 0
for table in tables:
t = table if isinstance(table, Table) else table[2]
if not isinstance(table, Table):
indices = xs_sind[np.searchsorted(xs_sorted, table[0])]
data.X[pos:pos+len(t), indices] = table[1]
pos += len(t)
data[:, source_var] = np.array(list(
chain(*(repeat(fn, len(table))
for fn, table in zip(filenames, ntables)))
)).reshape(-1, 1)
data[:, label_var] = np.array(list(
chain(*(repeat(label, len(table))
for fn, table in zip(filenames, ntables)))
)).reshape(-1, 1)
return data
示例3: single_x_reader
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def single_x_reader(self, spc_file):
domvals = spc_file.x # first column is attribute name
domain = Domain([ContinuousVariable.make("%f" % f) for f in domvals], None)
y_data = [sub.y for sub in spc_file.sub]
y_data = np.array(y_data)
table = Orange.data.Table.from_numpy(domain, y_data.astype(float, order='C'))
return table
示例4: extend_attributes
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def extend_attributes(self, X, feature_names, var_attrs=None):
"""
Append features to corpus.
Args:
X (numpy.ndarray): Features to append
feature_names (list): List of string containing feature names
var_attrs (dict): Additional attributes appended to variable.attributes.
"""
self.X = np.hstack((self.X, X))
new_attr = self.domain.attributes
for f in feature_names:
var = ContinuousVariable.make(f)
if isinstance(var_attrs, dict):
var.attributes.update(var_attrs)
new_attr += (var, )
new_domain = Domain(
attributes=new_attr,
class_vars=self.domain.class_vars,
metas=self.domain.metas
)
self.domain = new_domain
示例5: read
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def read(self):
with open(self.filename, "rb") as f:
# read first row separately because of two empty columns
header = f.readline().decode("ascii").rstrip().split("\t")
header = [a.strip() for a in header]
assert header[0] == header[1] == ""
dom_vals = [float(v) for v in header[2:]]
domain = Orange.data.Domain([ContinuousVariable.make("%f" % f) for f in dom_vals], None)
tbl = np.loadtxt(f, ndmin=2)
data = Orange.data.Table(domain, tbl[:, 2:])
metas = [ContinuousVariable.make('map_x'), ContinuousVariable.make('map_y')]
domain = Orange.data.Domain(domain.attributes, None, metas=metas)
data = data.transform(domain)
data[:, metas[0]] = tbl[:, 0].reshape(-1, 1)
data[:, metas[1]] = tbl[:, 1].reshape(-1, 1)
return data
示例6: _guess_variable
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def _guess_variable(self, field_name, field_metadata, inspect_table):
type_code = field_metadata[0]
FLOATISH_TYPES = (700, 701, 1700) # real, float8, numeric
INT_TYPES = (20, 21, 23) # bigint, int, smallint
CHAR_TYPES = (25, 1042, 1043,) # text, char, varchar
BOOLEAN_TYPES = (16,) # bool
DATE_TYPES = (1082, 1114, 1184, ) # date, timestamp, timestamptz
# time, timestamp, timestamptz, timetz
TIME_TYPES = (1083, 1114, 1184, 1266,)
if type_code in FLOATISH_TYPES:
return ContinuousVariable.make(field_name)
if type_code in TIME_TYPES + DATE_TYPES:
tv = TimeVariable.make(field_name)
tv.have_date |= type_code in DATE_TYPES
tv.have_time |= type_code in TIME_TYPES
return tv
if type_code in INT_TYPES: # bigint, int, smallint
if inspect_table:
values = self.get_distinct_values(field_name, inspect_table)
if values:
return DiscreteVariable.make(field_name, values)
return ContinuousVariable.make(field_name)
if type_code in BOOLEAN_TYPES:
return DiscreteVariable.make(field_name, ['false', 'true'])
if type_code in CHAR_TYPES:
if inspect_table:
values = self.get_distinct_values(field_name, inspect_table)
# remove trailing spaces
values = [v.rstrip() for v in values]
if values:
return DiscreteVariable.make(field_name, values)
return StringVariable.make(field_name)
示例7: construct_output_data_table
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def construct_output_data_table(embedded_images, embeddings):
# X = util.hstack((embedded_images.X, embeddings))
# embedded_images.X = X
new_attributes = [ContinuousVariable.make('n{:d}'.format(d))
for d in range(embeddings.shape[1])]
domain_new = Domain(
list(embedded_images.domain.attributes) + new_attributes,
embedded_images.domain.class_vars,
embedded_images.domain.metas)
table = embedded_images.transform(domain_new)
table[:, new_attributes] = embeddings
return table
示例8: test_domaineditor_makes_variables
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def test_domaineditor_makes_variables(self):
# Variables created with domain editor should be interchangeable
# with variables read from file.
dat = """V0\tV1\nc\td\n\n1.0\t2"""
v0 = StringVariable.make("V0")
v1 = ContinuousVariable.make("V1")
with named_file(dat, suffix=".tab") as filename:
self.open_dataset(filename)
model = self.widget.domain_editor.model()
model.setData(model.createIndex(0, 1), "text", Qt.EditRole)
model.setData(model.createIndex(1, 1), "numeric", Qt.EditRole)
self.widget.apply_button.click()
data = self.get_output(self.widget.Outputs.data)
self.assertEqual(data.domain["V0"], v0)
self.assertEqual(data.domain["V1"], v1)
示例9: multi_x_reader
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def multi_x_reader(self, spc_file):
# use x-values as domain
all_x = []
for sub in spc_file.sub:
x = sub.x
# assume values in x do not repeat
all_x = np.union1d(all_x, x)
domain = Domain([ContinuousVariable.make("%f" % f) for f in all_x], None)
instances = []
for sub in spc_file.sub:
x, y = sub.x, sub.y
newinstance = np.ones(len(all_x))*np.nan
ss = np.searchsorted(all_x, x) # find positions to set
newinstance[ss] = y
instances.append(newinstance)
y_data = np.array(instances).astype(float, order='C')
return Orange.data.Table.from_numpy(domain, y_data)
示例10: transpose_table
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def transpose_table(table):
"""
Transpose the rows and columns of the table.
Args:
table: Data in :obj:`Orange.data.Table`
Returns:
Transposed :obj:`Orange.data.Table`. (Genes as columns)
"""
attrs = table.domain.attributes
attr = [ContinuousVariable.make(ex['Gene'].value) for ex in table]
# Set metas
new_metas = [StringVariable.make(name) if name is not 'Time' else TimeVariable.make(name)
for name in sorted(table.domain.variables[0].attributes.keys())]
domain = Domain(attr, metas=new_metas)
meta_values = [[exp.attributes[var.name] for var in domain.metas] for exp in attrs]
return Table(domain, table.X.transpose(), metas=meta_values)
示例11: read_spectra
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def read_spectra(self):
am = agilentMosaicIFG(self.filename)
info = am.info
X = am.data
features = np.arange(X.shape[-1])
try:
px_size = info['FPA Pixel Size'] * info['PixelAggregationSize']
except KeyError:
# Use pixel units if FPA Pixel Size is not known
px_size = 1
x_locs = np.linspace(0, X.shape[1]*px_size, num=X.shape[1], endpoint=False)
y_locs = np.linspace(0, X.shape[0]*px_size, num=X.shape[0], endpoint=False)
features, data, additional_table = _spectra_from_image(X, features, x_locs, y_locs)
import_params = ['Effective Laser Wavenumber',
'Under Sampling Ratio',
]
new_attributes = []
new_columns = []
for param_key in import_params:
try:
param = info[param_key]
except KeyError:
pass
else:
new_attributes.append(ContinuousVariable.make(param_key))
new_columns.append(np.full((len(data),), param))
domain = Domain(additional_table.domain.attributes,
additional_table.domain.class_vars,
additional_table.domain.metas + tuple(new_attributes))
table = additional_table.transform(domain)
table[:, new_attributes] = np.asarray(new_columns).T
return (features, data, table)
示例12: read
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
def read(self):
who = matlab.whosmat(self.filename)
if not who:
raise IOError("Couldn't load matlab file " + self.filename)
else:
ml = matlab.loadmat(self.filename, chars_as_strings=True)
ml = {a: b for a, b in ml.items() if isinstance(b, np.ndarray)}
# X is the biggest numeric array
numarrays = []
for name, con in ml.items():
if issubclass(con.dtype.type, numbers.Number):
numarrays.append((name, reduce(lambda x, y: x*y, con.shape, 1)))
X = None
if numarrays:
nameX = max(numarrays, key=lambda x: x[1])[0]
X = ml.pop(nameX)
# find an array with compatible shapes
attributes = []
if X is not None:
nameattributes = None
for name, con in ml.items():
if con.shape in [(X.shape[1],), (1, X.shape[1])]:
nameattributes = name
break
attributenames = ml.pop(nameattributes).ravel() if nameattributes else range(X.shape[1])
attributenames = [str(a).strip() for a in attributenames] # strip because of numpy char array
attributes = [ContinuousVariable.make(a) for a in attributenames]
metas = []
metaattributes = []
sizemetas = None
if X is None:
counts = defaultdict(list)
for name, con in ml.items():
counts[len(con)].append(name)
if counts:
sizemetas = max(counts.keys(), key=lambda x: len(counts[x]))
else:
sizemetas = len(X)
if sizemetas:
for name, con in ml.items():
if len(con) == sizemetas:
metas.append(name)
metadata = []
for m in sorted(metas):
f = ml[m]
metaattributes.append(StringVariable.make(m))
f.resize(sizemetas, 1)
metadata.append(f)
metadata = np.hstack(tuple(metadata))
domain = Domain(attributes, metas=metaattributes)
if X is None:
X = np.zeros((sizemetas, 0))
return Orange.data.Table.from_numpy(domain, X, Y=None, metas=metadata)
示例13: calculateFFT
# 需要导入模块: from Orange.data import ContinuousVariable [as 别名]
# 或者: from Orange.data.ContinuousVariable import make [as 别名]
#.........这里部分代码省略.........
zff=2**self.zff,
phase_res=self.phase_resolution if self.phase_res_limit else None,
phase_corr=self.phase_corr,
peak_search=self.peak_search,
)
stored_phase = self.stored_phase
stored_zpd_fwd, stored_zpd_back = None, None
# Only use first row stored phase for now
if stored_phase is not None:
stored_phase = stored_phase[0]
try:
stored_zpd_fwd = int(stored_phase["zpd_fwd"].value)
except ValueError:
stored_zpd_fwd = None
try:
stored_zpd_back = int(stored_phase["zpd_back"].value)
except ValueError:
stored_zpd_back = None
stored_phase = stored_phase.x # lowercase x for RowInstance
for row in self.data.X:
if self.sweeps in [2, 3]:
# split double-sweep for forward/backward
# forward: 2-2 = 0 , backward: 3-2 = 1
try:
row = np.hsplit(row, 2)[self.sweeps - 2]
except ValueError as e:
self.Error.ifg_split_error(e)
return
if self.sweeps in [0, 2, 3]:
try:
spectrum_out, phase_out, wavenumbers = fft_single(
row, zpd=stored_zpd_fwd, phase=stored_phase)
zpd_fwd.append(fft_single.zpd)
except ValueError as e:
self.Error.fft_error(e)
return
elif self.sweeps == 1:
# Double sweep interferogram is split, solved independently and the
# two results are averaged.
try:
data = np.hsplit(row, 2)
except ValueError as e:
self.Error.ifg_split_error(e)
return
fwd = data[0]
# Reverse backward sweep to match fwd sweep
back = data[1][::-1]
# Calculate spectrum for both forward and backward sweeps
try:
spectrum_fwd, phase_fwd, wavenumbers = fft_single(
fwd, zpd=stored_zpd_fwd, phase=stored_phase)
zpd_fwd.append(fft_single.zpd)
spectrum_back, phase_back, wavenumbers = fft_single(
back, zpd=stored_zpd_back, phase=stored_phase)
zpd_back.append(fft_single.zpd)
except ValueError as e:
self.Error.fft_error(e)
return
# Calculate the average of the forward and backward sweeps
spectrum_out = np.mean(np.array([spectrum_fwd, spectrum_back]), axis=0)
phase_out = np.mean(np.array([phase_fwd, phase_back]), axis=0)
else:
return
spectra.append(spectrum_out)
phases.append(phase_out)
spectra = np.vstack(spectra)
phases = np.vstack(phases)
self.phases_table = build_spec_table(wavenumbers, phases,
additional_table=self.data)
self.phases_table = add_meta_to_table(self.phases_table,
ContinuousVariable.make("zpd_fwd"),
zpd_fwd)
if zpd_back:
self.phases_table = add_meta_to_table(self.phases_table,
ContinuousVariable.make("zpd_back"),
zpd_back)
if self.limit_output is True:
limits = np.searchsorted(wavenumbers,
[self.out_limit1, self.out_limit2])
wavenumbers = wavenumbers[limits[0]:limits[1]]
# Handle 1D array if necessary
if spectra.ndim == 1:
spectra = spectra[None, limits[0]:limits[1]]
else:
spectra = spectra[:, limits[0]:limits[1]]
self.spectra_table = build_spec_table(wavenumbers, spectra,
additional_table=self.data)
self.Outputs.spectra.send(self.spectra_table)
self.Outputs.phases.send(self.phases_table)