本文整理汇总了Python中Object.Object.remove_pixel方法的典型用法代码示例。如果您正苦于以下问题:Python Object.remove_pixel方法的具体用法?Python Object.remove_pixel怎么用?Python Object.remove_pixel使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Object.Object
的用法示例。
在下文中一共展示了Object.remove_pixel方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: translate_object
# 需要导入模块: from Object import Object [as 别名]
# 或者: from Object.Object import remove_pixel [as 别名]
def translate_object(self, obj, distance):
obj_new = Object((0, 0), 0)
obj_new.remove_pixel((0, 0))
for xy in obj.area:
obj_new.add_pixel((xy[0] + distance[0], xy[1] + distance[1]))
obj_new.find_centroid()
return obj_new
示例2: get_solution
# 需要导入模块: from Object import Object [as 别名]
# 或者: from Object.Object import remove_pixel [as 别名]
def get_solution(self):
answer = -1
# *** REAL CODE ***
# Check for holistic symmetry
vertical_symmetry_measures = []
horizontal_symmetry_measures = []
for solution in self.solutions:
self.figure_sol = solution
holistic_image = self.create_merged_image()
vertical_symmetry_measures.append(self.get_vertical_symmetry_measure(holistic_image))
horizontal_symmetry_measures.append(self.get_horizontal_symmetry_measure(holistic_image))
# Check vertical
max_measure = max(vertical_symmetry_measures)
if max_measure > self.threshold:
return vertical_symmetry_measures.index(max_measure) + 1
# Check horizontal
max_measure = max(horizontal_symmetry_measures)
if max_measure > self.threshold:
return horizontal_symmetry_measures.index(max_measure) + 1
# Horizontal transforms alone have been sufficient for the practice problems encountered
transform = self.get_transform()
print transform[0]
if transform[0] == 'add':
fig_sum = self.figure_add(self.figure_g, self.figure_h)
answer = self.find_most_similar_solution(fig_sum)
elif transform[0] == 'subtract':
fig_diff = self.figure_subtract(self.figure_g, self.figure_h)
answer = self.find_most_similar_solution(fig_diff)
elif transform[0] == 'xor':
fig_xor = self.figure_xor(self.figure_g, self.figure_h)
answer = self.find_most_similar_solution(fig_xor)
elif transform[0] == 'and':
fig_and = self.figure_and(self.figure_g, self.figure_h)
answer = self.find_most_similar_solution(fig_and)
elif transform[0] == 'resize':
# if at this point, only 2 objects in figure
# Get size of object in question and get scale factor from transform data
obj = self.figure_h.objects[0]
width_obj, height_obj = obj.size()
width_trans, height_trans = transform[1]
scale = (1 + width_trans / float(width_obj), 1 + height_trans / float(height_obj))
im = self.figure_h.image
width, height = im.size
im_resized = im.resize((int(width * scale[0]), int(height * scale[1])), Image.BILINEAR)
width_new, height_new = im_resized.size
width_diff = width_new - width
height_diff = height_new - height
box = (width_diff/2, height_diff/2, width_new - width_diff/2, height_new - height_diff/2)
fig = Figure(im_resized.crop(box))
answer = self.find_most_similar_solution(fig)
elif transform[0] == 'add and translate':
translate_distance = transform[1]
obj1 = self.figure_g.objects[0]
size = self.figure_g.image.size
init_l_val = 255
obj1_new = Object((0, 0), 0)
obj2_new = Object((0, 0), 0)
obj1_new.remove_pixel((0, 0))
obj2_new.remove_pixel((0, 0))
# Slide first two objects away from each other
for coord in obj1.area:
obj1_new.add_pixel((coord[0] + translate_distance*2, coord[1]))
obj2_new.add_pixel((coord[0] - translate_distance*2, coord[1]))
# Make new image with translated objects
image_new = Image.new('L', size, color=init_l_val)
for xy in obj1_new.area:
image_new.putpixel(xy, 0)
for xy in obj2_new.area:
image_new.putpixel(xy, 0)
for xy in obj1.area:
image_new.putpixel(xy, 0)
fig = Figure(image_new)
answer = self.find_most_similar_solution(fig)
elif transform[0] == 'duplicate and separate':
translate_distance = transform[1]
objs_orig = self.figure_g.objects
size = self.figure_g.image.size
# Duplicate objects and separate them
objs_left = []
objs_right = []
for obj in objs_orig:
objs_left.append(self.translate_object(obj, (translate_distance[0], translate_distance[1])))
objs_right.append(self.translate_object(obj, (-translate_distance[0], translate_distance[1])))
# Make new image with translated objects
image_left_right = self.image_from_objects(size, objs_left + objs_right)
#.........这里部分代码省略.........
示例3: get_solution
# 需要导入模块: from Object import Object [as 别名]
# 或者: from Object.Object import remove_pixel [as 别名]
def get_solution(self):
answer = -1
# *** REAL CODE ***
# Check for holistic symmetry
vertical_symmetry_measures = []
horizontal_symmetry_measures = []
for solution in self.solutions:
self.figure_sol = solution
holistic_image = self.create_merged_image()
vertical_symmetry_measures.append(self.get_vertical_symmetry_measure(holistic_image))
horizontal_symmetry_measures.append(self.get_horizontal_symmetry_measure(holistic_image))
# Check vertical
max_measure = max(vertical_symmetry_measures)
if max_measure > self.threshold:
return vertical_symmetry_measures.index(max_measure) + 1
# Check horizontal
max_measure = max(horizontal_symmetry_measures)
if max_measure > self.threshold:
return horizontal_symmetry_measures.index(max_measure) + 1
# Horizontal transforms alone have been sufficient for the practice problems encountered
transform = self.get_transform(self.figure_a, self.figure_b, self.figure_c)
# These values used later on
self.figure_g.identify_objects()
self.figure_g.find_centroids()
self.figure_h.identify_objects()
self.figure_h.find_centroids()
if transform[0] == 'resize':
# if at this point, only 2 objects in figure
# Get size of object in question and get scale factor from transform data
obj = self.figure_h.objects[1]
width_obj, height_obj = obj.size()
width_trans, height_trans = transform[1]
scale = (1 + width_trans / float(width_obj), 1 + height_trans / float(height_obj))
im = self.figure_h.image
width, height = im.size
im_resized = im.resize((int(width * scale[0]), int(height * scale[1])), Image.BILINEAR)
width_new, height_new = im_resized.size
width_diff = width_new - width
height_diff = height_new - height
box = (width_diff/2, height_diff/2, width_new - width_diff/2, height_new - height_diff/2)
fig = Figure(im_resized.crop(box))
answer = self.find_most_similar_solution(fig)
elif transform[0] == 'add and translate':
translate_distance = transform[1]
obj1 = self.figure_g.objects[1]
size = self.figure_g.image.size
init_l_val = 255
obj1_new = Object((0, 0), 0)
obj2_new = Object((0, 0), 0)
obj1_new.remove_pixel((0, 0))
obj2_new.remove_pixel((0, 0))
# Slide first two objects away from each other
for coord in obj1.area:
obj1_new.add_pixel((coord[0] + translate_distance*2, coord[1]))
obj2_new.add_pixel((coord[0] - translate_distance*2, coord[1]))
# Make new image with translated objects
image_new = Image.new('L', size, color=init_l_val)
for xy in obj1_new.area:
image_new.putpixel(xy, 0)
for xy in obj2_new.area:
image_new.putpixel(xy, 0)
for xy in obj1.area:
image_new.putpixel(xy, 0)
fig = Figure(image_new)
answer = self.find_most_similar_solution(fig)
elif transform[0] == 'horizontal pass through':
for solution in self.solutions:
solution.identify_objects()
num_dark_obj = 0
for obj in solution.objects:
if obj.l_val < 128:
num_dark_obj += 1
if num_dark_obj < 2:
continue
size = solution.image.size
im_centroid = (size[0]/2, size[1]/2)
max_distance = size[0]/2
for i in xrange(2, max_distance, 2):
objects_new = []
for obj in solution.objects:
if obj.l_val < 128:
# On the left side
if obj.centroid[0] < im_centroid[0]:
obj_new = self.translate_object(obj, (i, 0))
# On the right side
else:
#.........这里部分代码省略.........
示例4: get_transform
# 需要导入模块: from Object import Object [as 别名]
# 或者: from Object.Object import remove_pixel [as 别名]
def get_transform(self, figure1, figure2, figure3):
figure1.identify_objects()
figure2.identify_objects()
figure3.identify_objects()
figure1.find_centroids()
figure2.find_centroids()
figure3.find_centroids()
'''
*** TEST CODE ***
# Take difference of images and show result
fig_diff = Figure(ImageChops.difference(figure1.image, figure2.image))
fig_diff.identify_objects()
fig_diff.image.show()
'''
# Check for resizing
if len(figure1.objects) == len(figure2.objects) == len(figure3.objects) == 2:
# Check for simple shape resize
obj1 = figure1.objects[1]
obj2 = figure2.objects[1]
obj3 = figure3.objects[1]
obj1_size = obj1.size()
obj2_size = obj2.size()
obj3_size = obj3.size()
xy_diff_23 = (obj3_size[0] - obj2_size[0], obj3_size[1] - obj2_size[1])
xy_diff_12 = (obj2_size[0] - obj1_size[0], obj2_size[1] - obj1_size[1])
if abs(xy_diff_23[0] - xy_diff_12[0]) < 3 and abs(xy_diff_23[1] - xy_diff_12[1]) < 3:
resize_amount = ((xy_diff_23[0] + xy_diff_12[0]) / 2, (xy_diff_23[1] + xy_diff_12[1]) / 2)
return ['resize', resize_amount]
if len(figure1.objects) >= 2:
# Check for Add + Horizontal Slide
obj1 = figure1.objects[1]
size = figure1.image.size
width_image = size[0]
width_obj = obj1.size()[0]
max_slide_distance = (width_image / 2) - (width_obj / 2)
for i in xrange(0, max_slide_distance, 2):
init_l_val = 255
obj1_new = Object((0, 0), 0)
obj2_new = Object((0, 0), 0)
obj1_new.remove_pixel((0, 0))
obj2_new.remove_pixel((0, 0))
# Slide first two objects away from each other
for coord in obj1.area:
obj1_new.add_pixel((coord[0] + i, coord[1]))
obj2_new.add_pixel((coord[0] - i, coord[1]))
image_new = Image.new('L', size, color=init_l_val)
# Make new image with translated objects
try:
for xy in obj1_new.area:
image_new.putpixel(xy, 0)
for xy in obj2_new.area:
image_new.putpixel(xy, 0)
except IndexError:
break
# Check if it is correct
if self.is_equal(image_new, figure2.image):
image_new = Image.new('L', size, color=init_l_val)
# Translate objects again
for xy in obj1_new.area:
image_new.putpixel((xy[0] + i, xy[1]), 0)
for xy in obj2_new.area:
image_new.putpixel((xy[0] - i, xy[1]), 0)
# Add third object
for xy in obj1.area:
image_new.putpixel(xy, 0)
# Check that transformation propagates to 3rd figure
if self.is_equal(image_new, figure3.image):
slide_distance = i
return ['add and translate', slide_distance]
# Check for Horizontal Pass Through
result = self.horizontal_pass_through(figure1, figure2, figure3)
if result[0] == 'horizontal pass through':
return result
return ['no transform found']