当前位置: 首页>>代码示例>>Python>>正文


Python FunctionSlot.FunctionSlot类代码示例

本文整理汇总了Python中FunctionSlot.FunctionSlot的典型用法代码示例。如果您正苦于以下问题:Python FunctionSlot类的具体用法?Python FunctionSlot怎么用?Python FunctionSlot使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了FunctionSlot类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

    def __init__(self):
        """Genome Constructor"""
        self.evaluator = FunctionSlot("Evaluator")
        self.initializator = FunctionSlot("Initializator")
        self.mutator = FunctionSlot("Mutator")
        self.crossover = FunctionSlot("Crossover")

        self.internalParams = {}
        self.score = 0.0
        self.fitness = 0.0
开发者ID:HBPNeurorobotics,项目名称:mouse_locomotion,代码行数:10,代码来源:GenomeBase.py

示例2: __init__

	def __init__(self):
		""" Particle Constructor """
		self.evaluator = FunctionSlot("Evaluator")
		self.position_initializator = FunctionSlot("Position Initializator")
		self.velocity_initializator = FunctionSlot(" Velocity Initializator")
		self.position_communicator = FunctionSlot("Position Communicator")
		self.information_communicator = FunctionSlot("Information Communicator")
		
		self.allSlots = [self.evaluator, self.position_initializator,
					self.velocity_initializator, self.position_communicator, self.information_communicator]
		
		self.internalParams = {}
		self.fitness = 0.0
		self.ownBestFitness = 0.0
开发者ID:DiNAi,项目名称:pypso,代码行数:14,代码来源:ParticleBase.py

示例3: __init__

 def __init__(self):
     self.selector = FunctionSlot("Selector")
     self.GAEngine = None
     self.nMigrationRate = Consts.CDefGenMigrationRate
     self.nIndividuals = Consts.CDefMigrationNIndividuals
     self.nReplacement = Consts.CDefGenMigrationReplacement
     self.networkCompression = 9
开发者ID:erikreed-public,项目名称:Pyevolve,代码行数:7,代码来源:Migration.py

示例4: __init__

 def __init__(self):
     
    """Genome Constructor"""
    self.evaluator = FunctionSlot("Evaluator")
    self.initializator = FunctionSlot("Initializator")
    self.mutator = FunctionSlot("Mutator")
    self.crossover = FunctionSlot("Crossover")
    ###
    self.list_dic={}
    self.list_margin={}
    
    self.totalmoney=0
    #my_set
    self.internalParams = {}
    self.score = 0.0
    self.fitness = 0.0
开发者ID:lin-dodo,项目名称:pyevolve,代码行数:16,代码来源:GenomeBase.py

示例5: __init__

   def __init__(self, genome, seed=None, interactiveMode=True):
      """ Initializator of GSimpleGA """
      if seed: random.seed(seed)

      if type(interactiveMode) != BooleanType:
         Util.raiseException("Interactive Mode option must be True or False", TypeError)
      
      if not isinstance(genome, GenomeBase):
         Util.raiseException("The genome must be a GenomeBase subclass", TypeError)

      self.internalPop  = GPopulation(genome)
      self.nGenerations = Consts.CDefGAGenerations
      self.pMutation    = Consts.CDefGAMutationRate
      self.pCrossover   = Consts.CDefGACrossoverRate
      self.nElitismReplacement = Consts.CDefGAElitismReplacement
      self.setPopulationSize(Consts.CDefGAPopulationSize)
      self.minimax      = Consts.minimaxType["maximize"]
      self.elitism      = True

      # Adapters
      self.dbAdapter        = None
      self.migrationAdapter = None
      
      self.time_init       = None
      self.interactiveMode = interactiveMode
      self.interactiveGen  = -1
      self.GPMode = False

      self.selector            = FunctionSlot("Selector")
      self.stepCallback        = FunctionSlot("Generation Step Callback")
      self.terminationCriteria = FunctionSlot("Termination Criteria")
      self.selector.set(Consts.CDefGASelector)
      self.allSlots            = [ self.selector, self.stepCallback, self.terminationCriteria ]

      self.internalParams = {}
      ####
     
      #####
      self.currentGeneration = 0

      # GP Testing
      for classes in Consts.CDefGPGenomes:
         if  isinstance(self.internalPop.oneSelfGenome, classes):
            self.setGPMode(True)
            break
      
      logging.debug("A GA Engine was created, nGenerations=%d", self.nGenerations)
开发者ID:lin-dodo,项目名称:pyevolve,代码行数:47,代码来源:GSimpleGA.py

示例6: __init__

 def __init__(self, host, port, group_name):
    self.myself = None
    self.groupName = group_name
    self.selector = FunctionSlot("Selector")
    self.setMyself(host, port)
    self.GAEngine = None
    self.nMigrationRate = Consts.CDefGenMigrationRate
    self.nIndividuals = Consts.CDefMigrationNIndividuals
    self.nReplacement = Consts.CDefGenMigrationReplacement
    self.networkCompression = 9
开发者ID:Gabs48,项目名称:SpringMassNetworks,代码行数:10,代码来源:Migration.py

示例7: __init__

   def __init__(self, genome):
      """ The GPopulation Class creator """

      if isinstance(genome, GPopulation):
         self.oneSelfGenome  = genome.oneSelfGenome
         self.internalPop    = []
         self.internalPopRaw = []
         self.popSize       = genome.popSize
         self.sortType      = genome.sortType
         self.sorted        = False
         self.minimax       = genome.minimax
         self.scaleMethod   = genome.scaleMethod
         self.allSlots      = [self.scaleMethod]
         self.evaluator     = FunctionSlot("Evaluator")

         self.internalParams = genome.internalParams
         self.multiProcessing = genome.multiProcessing

         self.statted = False
         self.stats   = Statistics()
         return

      logging.debug("New population instance, %s class genomes.", genome.__class__.__name__)
      self.oneSelfGenome  = genome
      self.internalPop    = []
      self.internalPopRaw = []
      self.popSize       = 0
      self.sortType      = Consts.CDefPopSortType
      self.sorted        = False
      self.minimax       = Consts.CDefPopMinimax
      self.scaleMethod   = FunctionSlot("Scale Method")
      self.scaleMethod.set(Consts.CDefPopScale)
      self.allSlots      = [self.scaleMethod]
      self.evaluator     = FunctionSlot("Evaluator")

      self.internalParams = {}
      self.multiProcessing = (False, False)

      # Statistics
      self.statted = False
      self.stats   = Statistics()
开发者ID:Gabs48,项目名称:mouse_locomotion,代码行数:41,代码来源:GPopulation.py

示例8: __init__

	def __init__(self,topology,seed=None,interactiveMode=True):
		""" Initializator of PSO """
		#random seed
		random.seed(seed)
		#Pso type used by the particle
		self.psoType = Consts.CDefPsoType
		#Topology used
		self.topology = topology
		#Set the population size
		self.setSwarmSize(Consts.CDefSwarmSize)
		#Cognitive and Social Coefficients
		self.C1,self.C2 = Consts.CDefCoefficients
        #Time steps
		self.timeSteps = Consts.CDefSteps
		#Interactive Mode (True or False)
		self.interactiveMode = interactiveMode
		#Current step
		self.currentStep = 0
		#Inertia Factor Minus
		self.inertiaFactorMinus = None
		#Inertia coefficient
		self.inertiaFactor = None
		#Time initial
		self.time_init = None
	    #Optimization type
		self.minimax = Consts.minimaxType["minimize"]
		#Report file adapter 
		self.reportAdapter = None
		#Step Callback
		self.stepCallback = FunctionSlot("Step Callback")
		#Termination Criteria
		self.terminationCriteria = FunctionSlot("Termination Criteria")
		#All slots
		self.allSlots = [self.stepCallback, self.terminationCriteria]
		
		print "A PSO Engine was created, timeSteps=% d" % ( self.timeSteps, )
开发者ID:DiNAi,项目名称:pypso,代码行数:36,代码来源:Pso.py

示例9: __init__

   def __init__(self, genome):
      """ The GPopulation Class creator """

      logging.debug("New population instance, %s class genomes.", genome.__class__.__name__)
      self.oneSelfGenome = genome
      self.internalPop   = []
      self.popSize       = 0
      self.sortType      = Consts.CDefPopSortType
      self.sorted        = False
      self.minimax       = Consts.CDefPopMinimax
      self.scaleMethod   = FunctionSlot("Scale Method")
      self.scaleMethod.set(Consts.CDefPopScale)
      self.allSlots      = [self.scaleMethod]

      # Statistics
      self.statted = False
      self.stats   = Statistics()
开发者ID:abrahamdone,项目名称:cs5600ai,代码行数:17,代码来源:GPopulation.py

示例10: __init__

    def __init__(self):
        self.myself = None
        self.selector = FunctionSlot("Selector")
        self.GAEngine = None
        self.nMigrationRate = Consts.CDefGenMigrationRate
        self.nIndividuals = Consts.CDefMigrationNIndividuals
        self.nReplacement = Consts.CDefGenMigrationReplacement

        self.comm = MPI.COMM_WORLD
        self.pid = self.comm.rank
        self.best_selector = Selectors.GRankSelector

        #now this is fixed
        if self.pid == 0:
            self.source = self.comm.size - 1
        else:
            self.source = self.comm.rank - 1
        self.dest = (self.comm.rank +1) % (self.comm.size)

        self.all_stars = None
开发者ID:lorenzoriano,项目名称:Pyevolve,代码行数:20,代码来源:MpiMigration.py

示例11: GenomeBase

class GenomeBase(object):
   """ GenomeBase Class - The base of all chromosome representation """
   __slots__ = ["evaluator", "initializator", "mutator", "crossover", "internalParams", "score", "fitness"]

   def __init__(self):
      """Genome Constructor"""
      self.evaluator = FunctionSlot("Evaluator")
      self.initializator = FunctionSlot("Initializator")
      self.mutator = FunctionSlot("Mutator")
      self.crossover = FunctionSlot("Crossover")

      self.internalParams = {}
      self.score = 0.0
      self.fitness = 0.0

   def getRawScore(self):
      """ Get the Raw Score of the genome

      :rtype: genome raw score

      """
      return self.score

   def getFitnessScore(self):
      """ Get the Fitness Score of the genome

      :rtype: genome fitness score

      """
      return self.fitness

   def __repr__(self):
      """String representation of Genome"""
      allSlots = [self.evaluator, self.initializator, self.mutator,
                  self.crossover]

      ret = "- GenomeBase\n"
      ret += "\tScore:\t\t\t %.6f\n" % (self.score,)
      ret += "\tFitness:\t\t %.6f\n\n" % (self.fitness,)
      ret += "\tParams:\t\t %s\n\n" % (self.internalParams,)

      for slot in allSlots:
         ret += "\t" + slot.__repr__()
      ret += "\n"

      return ret

   def setParams(self, **args):
      """ Set the internal params

      Example:
         >>> genome.setParams(rangemin=0, rangemax=100, gauss_mu=0, gauss_sigma=1)

      .. note:: All the individuals of the population shares this parameters and uses
                the same instance of this dict.

      :param args: this params will saved in every chromosome for genetic op. use

      """
      self.internalParams.update(args)

   def getParam(self, key, nvl=None):
      """ Gets an internal parameter

      Example:
         >>> genome.getParam("rangemax")
         100

      .. note:: All the individuals of the population shares this parameters and uses
                the same instance of this dict.

      :param key: the key of param
      :param nvl: if the key doesn't exist, the nvl will be returned

      """
      return self.internalParams.get(key, nvl)

   def resetStats(self):
      """ Clear score and fitness of genome """
      self.score = 0.0
      self.fitness = 0.0

   def evaluate(self, **args):
      """ Called to evaluate genome

      :param args: this parameters will be passes to the evaluator

      """
      self.resetStats()
      for it in self.evaluator.applyFunctions(self, **args):
         self.score += it

   def initialize(self, **args):
      """ Called to initialize genome

      :param args: this parameters will be passed to the initializator

      """
      for it in self.initializator.applyFunctions(self, **args):
         pass
#.........这里部分代码省略.........
开发者ID:ClaudomiroSales,项目名称:Pyevolve,代码行数:101,代码来源:GenomeBase.py

示例12: your_func

class GSimpleGA:
   """ GA Engine Class - The Genetic Algorithm Core

   Example:
      >>> ga = GSimpleGA.GSimpleGA(genome)
      >>> ga.selector.set(Selectors.GRouletteWheel)
      >>> ga.setGenerations(120)
      >>> ga.terminationCriteria.set(GSimpleGA.ConvergenceCriteria)

   :param genome: the :term:`Sample Genome`
   :param interactiveMode: this flag enables the Interactive Mode, the default is True
   :param seed: the random seed value

   .. note:: if you use the same random seed, all the runs of algorithm will be the same

   """

   selector = None
   """ This is the function slot for the selection method
   if you want to change the default selector, you must do this: ::

      ga_engine.selector.set(Selectors.GRouletteWheel) """

   stepCallback = None
   """ This is the :term:`step callback function` slot,
   if you want to set the function, you must do this: ::

      def your_func(ga_engine):
         # Here you have access to the GA Engine
         return False

      ga_engine.stepCallback.set(your_func)

   now *"your_func"* will be called every generation.
   When this function returns True, the GA Engine will stop the evolution and show
   a warning, if is False, the evolution continues.
   """

   terminationCriteria = None
   """ This is the termination criteria slot, if you want to set one
   termination criteria, you must do this: ::

      ga_engine.terminationCriteria.set(GSimpleGA.ConvergenceCriteria)

   Now, when you run your GA, it will stop when the population converges.

   There are those termination criteria functions: :func:`GSimpleGA.RawScoreCriteria`, :func:`GSimpleGA.ConvergenceCriteria`, :func:`GSimpleGA.RawStatsCriteria`, :func:`GSimpleGA.FitnessStatsCriteria`

   But you can create your own termination function, this function receives
   one parameter which is the GA Engine, follows an example: ::

      def ConvergenceCriteria(ga_engine):
         pop = ga_engine.getPopulation()
         return pop[0] == pop[len(pop)-1]

   When this function returns True, the GA Engine will stop the evolution and show
   a warning, if is False, the evolution continues, this function is called every
   generation.
   """

   def __init__(self, genome, seed=None, interactiveMode=True):
      """ Initializator of GSimpleGA """
      if seed: random.seed(seed)

      if type(interactiveMode) != BooleanType:
         Util.raiseException("Interactive Mode option must be True or False", TypeError)

      if not isinstance(genome, GenomeBase):
         Util.raiseException("The genome must be a GenomeBase subclass", TypeError)

      self.internalPop  = GPopulation(genome)
      self.nGenerations = Consts.CDefGAGenerations
      self.pMutation    = Consts.CDefGAMutationRate
      self.pCrossover   = Consts.CDefGACrossoverRate
      self.nElitismReplacement = Consts.CDefGAElitismReplacement
      self.setPopulationSize(Consts.CDefGAPopulationSize)
      self.minimax      = Consts.minimaxType["maximize"]
      self.elitism      = True

      # Adapters
      self.dbAdapter        = None
      self.migrationAdapter = None

      self.time_init       = None
      self.interactiveMode = interactiveMode
      self.interactiveGen  = -1
      self.GPMode = False

      self.selector            = FunctionSlot("Selector")
      self.stepCallback        = FunctionSlot("Generation Step Callback")
      self.terminationCriteria = FunctionSlot("Termination Criteria")
      self.selector.set(Consts.CDefGASelector)
      self.allSlots            = [ self.selector, self.stepCallback, self.terminationCriteria ]

      self.internalParams = {}

      self.currentGeneration = 0

      # GP Testing
      for classes in Consts.CDefGPGenomes:
#.........这里部分代码省略.........
开发者ID:aguirrea,项目名称:pyevolve,代码行数:101,代码来源:GSimpleGA.py

示例13: SimplePSO

class SimplePSO(object):
	""" SimplePSO Engine Class - The PSO Algorithm Core
	
	Example:
		>>> topology = Topology.GlobalTopology(particle_rep)
		>>> pso = PSO.SimplePSO(topology)
		>>> pso.setSteps(120)
	
	:param topology: the :term:`Sample Topology``
	:param  interactiveMode: this flag enables the Interactive Mode
	:param seed: the random seed value
	
	.. note:: if you see the same random seed, all the runs of the algorithm will be the same.
	
	"""
	
	stepCallBack = None
	""" This is the the :term: `step callback function` slot,
	if you want to set the function, you must do this: ::
		
		def your_func(pso_engine):
			#Here you have access to the PSO Engine
			return False
		
		pso_engine.stepCallback.set(your_func)
	
	now *"your_func"* will be called every step.
	When this function returns True, the  PSO Engine will stop the evolution and show
	a warning, if is False, the evolution continues.
	"""
	
	terminationCriteria  = None
	""" This is the termination criteria slot, if you want to set one 
	termination criteria, you mus do this: ::
		
		pso_engine.terminationCriteria.set(your_func)
		
	Now, when you run your PSO, it will stop when terminationCriteria be satisfied.
	
	To create your own termination function, you must put at least one parameter
	which is the PSO Engine, follows an example: ::
		
		def ConvergenceCriteria(pso_engine):
			swarm = pso_engine.getSwarm()
			return swarm[0] == swarm[len(swarm)-1]
		
	When this function returns True, the Pso Engine will stop the evolution and show
	a warning. If is False, the evolution  continues, this function is called every
	step.
	
	"""
	
	def __init__(self,topology,seed=None,interactiveMode=True):
		""" Initializator of PSO """
		#random seed
		random.seed(seed)
		#Pso type used by the particle
		self.psoType = Consts.CDefPsoType
		#Topology used
		self.topology = topology
		#Set the population size
		self.setSwarmSize(Consts.CDefSwarmSize)
		#Cognitive and Social Coefficients
		self.C1,self.C2 = Consts.CDefCoefficients
        #Time steps
		self.timeSteps = Consts.CDefSteps
		#Interactive Mode (True or False)
		self.interactiveMode = interactiveMode
		#Current step
		self.currentStep = 0
		#Inertia Factor Minus
		self.inertiaFactorMinus = None
		#Inertia coefficient
		self.inertiaFactor = None
		#Time initial
		self.time_init = None
	    #Optimization type
		self.minimax = Consts.minimaxType["minimize"]
		#Report file adapter 
		self.reportAdapter = None
		#Step Callback
		self.stepCallback = FunctionSlot("Step Callback")
		#Termination Criteria
		self.terminationCriteria = FunctionSlot("Termination Criteria")
		#All slots
		self.allSlots = [self.stepCallback, self.terminationCriteria]
		
		print "A PSO Engine was created, timeSteps=% d" % ( self.timeSteps, )


	def __repr__(self):
		""" The String representation of the PSO Engine """
		ret =   "- PSO-%s-%s Execution\n" % (self.getTopologyType(),self.getPsoType())
		ret +=  "\tSwarm Size:\t %d\n" % (self.topology.swarmSize,)
		ret +=  "\tTime Steps:\t %d\n" % (self.timeSteps,)      
		ret +=  "\tCurrent Step:\t %d\n" % (self.currentStep,)
		ret +=  "\tMinimax Type:\t %s\n" % (Consts.minimaxType.keys()[Consts.minimaxType.values().index(self.minimax)].capitalize(),)
		ret +=  "\tReport Adapter:\t %s\n" % (self.reportAdapter,)
		for slot in self.allSlots:
			ret += "\t" + slot.__repr__()
#.........这里部分代码省略.........
开发者ID:DiNAi,项目名称:pypso,代码行数:101,代码来源:Pso.py

示例14: xrange

class GPopulation:
   """ GPopulation Class - The container for the population

   **Examples**
      Get the population from the :class:`GSimpleGA.GSimpleGA` (GA Engine) instance
         >>> pop = ga_engine.getPopulation()

      Get the best fitness individual
         >>> bestIndividual = pop.bestFitness()

      Get the best raw individual
         >>> bestIndividual = pop.bestRaw()

      Get the statistics from the :class:`Statistics.Statistics` instance
         >>> stats = pop.getStatistics()
         >>> print stats["rawMax"]
         10.4

      Iterate, get/set individuals
         >>> for ind in pop:
         >>>   print ind
         (...)
         
         >>> for i in xrange(len(pop)):
         >>>    print pop[i]
         (...)

         >>> pop[10] = newGenome
         >>> pop[10].fitness
         12.5

   :param genome: the :term:`Sample genome`, or a GPopulation object, when cloning.

   """

   def __init__(self, genome):
      """ The GPopulation Class creator """

      if isinstance(genome, GPopulation):
          #Cloning a population?
         self.oneSelfGenome  = genome.oneSelfGenome
         self.internalPop    = []
         self.internalPopRaw = []
         self.popSize       = genome.popSize
         self.sortType      = genome.sortType
         self.sorted        = False
         self.minimax       = genome.minimax
         self.scaleMethod   = genome.scaleMethod
         self.allSlots      = [self.scaleMethod]

         self.internalParams = genome.internalParams
         self.multiProcessing = genome.multiProcessing

         self.statted = False
         self.stats   = Statistics()
         self.proc_pool = genome.proc_pool
         return

      logging.debug("New population instance, %s class genomes.", genome.__class__.__name__)
      self.oneSelfGenome  = genome
      self.internalPop    = []
      self.internalPopRaw = []
      self.popSize       = 0
      self.proc_pool = None
      self.sortType      = Consts.CDefPopSortType
      self.sorted        = False
      self.minimax       = Consts.CDefPopMinimax
      self.scaleMethod   = FunctionSlot("Scale Method")
      self.scaleMethod.set(Consts.CDefPopScale)
      self.allSlots      = [self.scaleMethod]

      self.internalParams = {}
      self.multiProcessing = (False, False)

      # Statistics
      self.statted = False
      self.stats   = Statistics()

   #---------------------------------------------------------------------------------
   def setMultiProcessing(self, flag=True, full_copy=False, number_of_processes=None):
        """ Sets the flag to enable/disable the use of python multiprocessing module.
        Use this option when you have more than one core on your CPU and when your
        evaluation function is very slow.
        The parameter "full_copy" defines where the individual data should be copied back
        after the evaluation or not. This parameter is useful when you change the
        individual in the evaluation function.

        :param flag: True (default) or False
        :param full_copy: True or False (default)
        :param number_of_processes: None = use the default, or specify the number

        .. warning:: Use this option only when your evaluation function is slow, se you
                   will get a good tradeoff between the process communication speed and the
                   parallel evaluation.
        """
        #Save the parameters
        old_settings = self.multiProcessing
        self.multiProcessing = (flag, full_copy, number_of_processes)
        #Re-initialize if anything changed.
        if (old_settings != self.multiProcessing):
#.........这里部分代码省略.........
开发者ID:neutrons,项目名称:CrystalPlan,代码行数:101,代码来源:GPopulation.py

示例15: MPIMigrator

class MPIMigrator(object):
    selector = None
    """ This is the function slot for the selection method
    if you want to change the default selector, you must do this: ::

    migration_scheme.selector.set(Selectors.GRouletteWheel) """

    def __init__(self):
        self.myself = None
        self.selector = FunctionSlot("Selector")
        self.GAEngine = None
        self.nMigrationRate = Consts.CDefGenMigrationRate
        self.nIndividuals = Consts.CDefMigrationNIndividuals
        self.nReplacement = Consts.CDefGenMigrationReplacement

        self.comm = MPI.COMM_WORLD
        self.pid = self.comm.rank
        self.best_selector = Selectors.GRankSelector

        #now this is fixed
        if self.pid == 0:
            self.source = self.comm.size - 1
        else:
            self.source = self.comm.rank - 1
        self.dest = (self.comm.rank +1) % (self.comm.size)

        self.all_stars = None

    def isReady(self):
        """ Returns true if is time to migrate """

        if self.GAEngine.getCurrentGeneration() == 0:
            return False

        if self.GAEngine.getCurrentGeneration() % self.nMigrationRate == 0:
            return True
        else:
            return False

    def getNumReplacement(self):
        """ Return the number of individuals that will be
        replaced in the migration process """
        return self.nReplacement

    def setNumReplacement(self, num_individuals):
        """ Return the number of individuals that will be
        replaced in the migration process

        :param num_individuals: the number of individuals to be replaced
        """
        self.nReplacement = num_individuals

    def getNumIndividuals(self):
        """ Return the number of individuals that will migrate

        :rtype: the number of individuals to be replaced
        """
        return self.nIndividuals

    def setNumIndividuals(self, num_individuals):
        """ Set the number of individuals that will migrate

        :param num_individuals: the number of individuals
        """
        self.nIndividuals = num_individuals

    def setMigrationRate(self, generations):
        """ Sets the generation frequency supposed to migrate
        and receive individuals.

        :param generations: the number of generations
        """
        self.nMigrationRate = generations

    def getMigrationRate(self):
        """ Return the the generation frequency supposed to migrate
        and receive individuals

        :rtype: the number of generations
        """
        return self.nMigrationRate

    def setGAEngine(self, ga_engine):
        """ Sets the GA Engine handler """
        self.GAEngine = ga_engine

    def start(self):
        """ Initializes the migration scheme """
        pass

    def stop(self):
        """ Stops the migration engine """
        pass

    def getGroupName(self):
        """ Gets the group name

        .. note:: all islands of evolution which are supposed to exchange
                  individuals, must have the same group name.
        """
#.........这里部分代码省略.........
开发者ID:lorenzoriano,项目名称:Pyevolve,代码行数:101,代码来源:MpiMigration.py


注:本文中的FunctionSlot.FunctionSlot类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。