本文整理汇总了Python中DAS.utils.logger.PrintManager.warning方法的典型用法代码示例。如果您正苦于以下问题:Python PrintManager.warning方法的具体用法?Python PrintManager.warning怎么用?Python PrintManager.warning使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DAS.utils.logger.PrintManager
的用法示例。
在下文中一共展示了PrintManager.warning方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_warning
# 需要导入模块: from DAS.utils.logger import PrintManager [as 别名]
# 或者: from DAS.utils.logger.PrintManager import warning [as 别名]
def test_warning(self):
"Test logger warning method"
old_stdout = sys.stdout
logger = PrintManager(self.name) # verbose is irrelevant
sys.stdout = StringIO()
logger.warning('test')
result = sys.stdout.getvalue()
expect = 'WARNING %s:%s test\n' % (self.name, funcname())
self.assertEqual(expect, result)
sys.stdout = old_stdout
示例2: KeyLearning
# 需要导入模块: from DAS.utils.logger import PrintManager [as 别名]
# 或者: from DAS.utils.logger.PrintManager import warning [as 别名]
class KeyLearning(object):
"""
This is the asynchronous part of the key-learning system, intended
to run probably not much more than daily once the key learning DB is
filled.
This searches through the DAS raw cache for all API output records,
recording at least `redundancy` das_ids for each primary_key found.
These das_ids are then used to fetch the query record, which records
the API system and urn of each of the records in question.
These documents are then processed to extract all the unique member
names they contained, which are then injected into the DAS keylearning
system.
"""
task_options = [{'name':'redundancy', 'type':'int', 'default':2,
'help':'Number of records to examine per DAS primary key'}]
def __init__(self, **kwargs):
self.logger = PrintManager('KeyLearning', kwargs.get('verbose', 0))
self.das = kwargs['DAS']
self.redundancy = kwargs.get('redundancy', 2)
def __call__(self):
"__call__ implementation"
self.das.rawcache.remove_expired("cache")
autodeque = lambda: collections.deque(maxlen=self.redundancy)
found_ids = collections.defaultdict(autodeque)
self.logger.info("finding das_ids")
for doc in self.das.rawcache.col.find(\
{'das.empty_record': 0, 'das.primary_key': {'$exists': True}},
fields=['das.primary_key', 'das_id']):
found_ids[doc['das']['primary_key']].append(doc['das_id'])
hit_ids = set()
self.logger.info("found %s primary_keys" % len(found_ids))
for key in found_ids:
self.logger.info("primary_key=%s" % key)
for das_id in found_ids[key]:
if not das_id in hit_ids:
self.logger.info("das_id=%s" % das_id)
hit_ids.add(das_id)
doc = self.das.rawcache.col.find_one(\
{'_id': ObjectId(das_id)})
if doc:
self.process_query_record(doc)
else:
self.logger.warning(\
"no record found for das_id=%s" % das_id)
return {}
def process_query_record(self, doc):
"""
Process a rawcache document, extracting the called
system, urn and url, then looking up the individual data records.
"""
das_id = str(doc['_id'])
systems = doc['das']['system']
urns = doc['das']['urn']
result = self.das.rawcache.find_records(das_id)
if len(systems)==len(urns) and len(systems)==result.count():
for i, record in enumerate(result):
self.process_document(systems[i], urns[i], record)
else:
self.logger.warning("got inconsistent system/urn/das_id length")
def process_document(self, system, urn, doc):
"""
Process a rawcache document record, finding all the unique
data members and inserting them into the cache.
"""
self.logger.info("%s::%s" % (system, urn))
members = set()
for key in doc.keys():
if not key in ('das', '_id', 'das_id'):
members |= self._process_document_recursor(doc[key], key)
self.das.keylearning.add_members(system, urn, list(members))
def _process_document_recursor(self, doc, prefix):
"""
Recurse through a nested data structure, finding all
the unique endpoint names. Lists are iterated over but do
not add anything to the prefix, eg
a: {b: 1, c: {d: 1, e: 1}, f: [{g: 1}, {h: 1}]} ->
a.b, a.c.d, a.c.e, a.f.g, a.f.h
(although normally we would expect each member of a list to
have the same structure)
"""
#.........这里部分代码省略.........
示例3: key_learning
# 需要导入模块: from DAS.utils.logger import PrintManager [as 别名]
# 或者: from DAS.utils.logger.PrintManager import warning [as 别名]
class key_learning(object):
"""
This is the asynchronous part of the key-learning system, intended
to run probably not much more than daily once the key learning DB is
filled.
This searches through the DAS raw cache for all API output records,
recording at least `redundancy` das_ids for each primary_key found.
These das_ids are then used to fetch the query record, which records
the API system and urn of each of the records in question.
These documents are then processed to extract all the unique member
names they contained, which are then injected into the DAS keylearning
system.
"""
task_options = [
{'name': 'redundancy',
'type': 'int',
'default': 2,
'help': 'Number of records to examine per DAS primary key'}]
def __init__(self, **kwargs):
self.logger = PrintManager('KeyLearning', kwargs.get('verbose', 0))
self.das = kwargs['DAS']
self.redundancy = kwargs.get('redundancy', 10)
def __call__(self):
"""__call__ implementation"""
self.das.rawcache.clean_cache("cache")
rawcache = self.das.rawcache.col
autodeque = lambda: collections.deque(maxlen=self.redundancy)
found_ids = collections.defaultdict(autodeque)
self.logger.info("finding das_ids")
for doc in rawcache.find({'das.record': record_codes('data_record'),
'das.primary_key': {'$exists': True}},
fields=['das.primary_key', 'das_id']):
for das_id in doc['das_id']:
found_ids[doc['das']['primary_key']].append(das_id)
hit_ids = set()
self.logger.info("found %s primary_keys" % len(found_ids))
for key in found_ids:
self.logger.info("primary_key=%s" % key)
for das_id in found_ids[key]:
if _DEBUG:
print '-======= DAS ID ======'
pprint(das_id)
print '-======= HIT ID (ALREADY VISITED) ======'
pprint(hit_ids)
if not das_id in hit_ids:
self.logger.info("das_id=%s" % das_id)
hit_ids.add(das_id)
doc = rawcache.find_one({'_id': ObjectId(das_id)})
if doc:
self.process_query_record(doc)
else:
self.logger.warning("no record for das_id=%s" % das_id)
if _DEBUG:
print 'result attributes (all):'
for row in self.das.keylearning.list_members():
pprint(row)
res_t = self.das.mapping.primary_key(row['system'], row['urn'])
print row.get('keys', ''), '-->', res_t, ':', \
', '.join([m for m in row.get('members', [])])
return {}
def process_query_record(self, doc):
"""
Process a rawcache document, extracting the called
system, urn and url, then looking up the individual data records.
"""
das_id = str(doc['_id'])
systems = doc['das']['system']
urns = doc['das']['urn']
result = self.das.rawcache.find_records(das_id)
if _DEBUG:
print 'in process_query_record. (das_id, systems, urns)=', \
(das_id, systems, urns)
print 'result count=', result.count(), '~= systems=', len(systems)
print 'len(systems)=', len(systems), '~= len(urns)', len(urns)
if _DEBUG:
print 'doc:'
pprint(doc)
result = [r for r in result]
print 'results in doc:'
pprint(result)
print '-----------------------------------'
# TODO: it seems these conditions are non-sense!!!
if len(systems) == len(urns) and len(systems) == 1:
for _, record in enumerate(result):
self.process_document(systems[0], urns[0], record)
#.........这里部分代码省略.........