本文整理汇总了Python中ConfigSpace.configuration_space.ConfigurationSpace类的典型用法代码示例。如果您正苦于以下问题:Python ConfigurationSpace类的具体用法?Python ConfigurationSpace怎么用?Python ConfigurationSpace使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ConfigurationSpace类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_build_new_GreaterThanIntCondition
def test_build_new_GreaterThanIntCondition(self):
expected = "a real [0.0, 1.0] [0.5]\n" \
"b integer [0, 10] [5]\n\n" \
"b | a > 0.5"
cs = ConfigurationSpace()
a = UniformFloatHyperparameter("a", 0, 1, 0.5)
b = UniformIntegerHyperparameter("b", 0, 10, 5)
cs.add_hyperparameter(a)
cs.add_hyperparameter(b)
cond = GreaterThanCondition(b, a, 0.5)
cs.add_condition(cond)
value = pcs_new.write(cs)
self.assertEqual(expected, value)
expected = "a integer [0, 10] [5]\n" \
"b integer [0, 10] [5]\n\n" \
"b | a > 5"
cs = ConfigurationSpace()
a = UniformIntegerHyperparameter("a", 0, 10, 5)
b = UniformIntegerHyperparameter("b", 0, 10, 5)
cs.add_hyperparameter(a)
cs.add_hyperparameter(b)
cond = GreaterThanCondition(b, a, 5)
cs.add_condition(cond)
value = pcs_new.write(cs)
self.assertEqual(expected, value)
示例2: test_write_forbidden
def test_write_forbidden(self):
cs = ConfigurationSpace()
hp1 = CategoricalHyperparameter("parent", [0, 1])
hp2 = UniformIntegerHyperparameter("child", 0, 2)
hp3 = UniformIntegerHyperparameter("child2", 0, 2)
hp4 = UniformIntegerHyperparameter("child3", 0, 2)
hp5 = CategoricalHyperparameter("child4", [4, 5, 6, 7])
cs.add_hyperparameters([hp1, hp2, hp3, hp4, hp5])
forb2 = ForbiddenEqualsClause(hp1, 1)
forb3 = ForbiddenInClause(hp2, range(2, 3))
forb4 = ForbiddenInClause(hp3, range(2, 3))
forb5 = ForbiddenInClause(hp4, range(2, 3))
forb6 = ForbiddenInClause(hp5, [6, 7])
and1 = ForbiddenAndConjunction(forb2, forb3)
and2 = ForbiddenAndConjunction(forb2, forb4)
and3 = ForbiddenAndConjunction(forb2, forb5)
cs.add_forbidden_clauses(
[forb2, forb3, forb4, forb5, forb6, and1, and2, and3])
irace.write(cs) # generates file called forbidden.txt
示例3: get_hyperparameter_search_space
def get_hyperparameter_search_space(cls, dataset_properties,
default=None,
include=None,
exclude=None):
cs = ConfigurationSpace()
# Compile a list of legal preprocessors for this problem
available_preprocessors = cls.get_available_components(
data_prop=dataset_properties,
include=include, exclude=exclude)
if len(available_preprocessors) == 0:
raise ValueError(
"No preprocessors found, please add no_preprocessing")
if default is None:
defaults = ['no_preprocessing', 'select_percentile', 'pca',
'truncatedSVD']
for default_ in defaults:
if default_ in available_preprocessors:
default = default_
break
preprocessor = CategoricalHyperparameter('__choice__',
list(
available_preprocessors.keys()),
default=default)
cs.add_hyperparameter(preprocessor)
for name in available_preprocessors:
preprocessor_configuration_space = available_preprocessors[name]. \
get_hyperparameter_search_space(dataset_properties)
cs = add_component_deepcopy(cs, name,
preprocessor_configuration_space)
return cs
示例4: get_hyperparameter_search_space
def get_hyperparameter_search_space(dataset_properties=None):
cs = ConfigurationSpace()
n_estimators = Constant("n_estimators", 100)
criterion = CategoricalHyperparameter(
"criterion", ["gini", "entropy"], default_value="gini")
# The maximum number of features used in the forest is calculated as m^max_features, where
# m is the total number of features, and max_features is the hyperparameter specified below.
# The default is 0.5, which yields sqrt(m) features as max_features in the estimator. This
# corresponds with Geurts' heuristic.
max_features = UniformFloatHyperparameter(
"max_features", 0., 1., default_value=0.5)
max_depth = UnParametrizedHyperparameter("max_depth", "None")
min_samples_split = UniformIntegerHyperparameter(
"min_samples_split", 2, 20, default_value=2)
min_samples_leaf = UniformIntegerHyperparameter(
"min_samples_leaf", 1, 20, default_value=1)
min_weight_fraction_leaf = UnParametrizedHyperparameter("min_weight_fraction_leaf", 0.)
max_leaf_nodes = UnParametrizedHyperparameter("max_leaf_nodes", "None")
min_impurity_decrease = UnParametrizedHyperparameter('min_impurity_decrease', 0.0)
bootstrap = CategoricalHyperparameter(
"bootstrap", ["True", "False"], default_value="True")
cs.add_hyperparameters([n_estimators, criterion, max_features,
max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes,
bootstrap, min_impurity_decrease])
return cs
示例5: get_hyperparameter_search_space
def get_hyperparameter_search_space(dataset_properties=None):
cs = ConfigurationSpace()
loss = CategoricalHyperparameter(
"loss", ["ls", "lad", "huber", "quantile"], default_value="ls")
learning_rate = UniformFloatHyperparameter(
name="learning_rate", lower=0.01, upper=1, default_value=0.1, log=True)
n_estimators = UniformIntegerHyperparameter(
"n_estimators", 50, 500, default_value=100)
max_depth = UniformIntegerHyperparameter(
name="max_depth", lower=1, upper=10, default_value=3)
min_samples_split = UniformIntegerHyperparameter(
name="min_samples_split", lower=2, upper=20, default_value=2, log=False)
min_samples_leaf = UniformIntegerHyperparameter(
name="min_samples_leaf", lower=1, upper=20, default_value=1, log=False)
min_weight_fraction_leaf = UnParametrizedHyperparameter(
"min_weight_fraction_leaf", 0.)
subsample = UniformFloatHyperparameter(
name="subsample", lower=0.01, upper=1.0, default_value=1.0, log=False)
max_features = UniformFloatHyperparameter(
"max_features", 0.1, 1.0, default_value=1)
max_leaf_nodes = UnParametrizedHyperparameter(
name="max_leaf_nodes", value="None")
min_impurity_decrease = UnParametrizedHyperparameter(
name='min_impurity_decrease', value=0.0)
alpha = UniformFloatHyperparameter(
"alpha", lower=0.75, upper=0.99, default_value=0.9)
cs.add_hyperparameters([loss, learning_rate, n_estimators, max_depth,
min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, subsample, max_features,
max_leaf_nodes, min_impurity_decrease, alpha])
cs.add_condition(InCondition(alpha, loss, ['huber', 'quantile']))
return cs
示例6: get_hyperparameter_search_space
def get_hyperparameter_search_space(dataset_properties=None):
# TODO add replace by zero!
strategy = CategoricalHyperparameter(
"strategy", ["mean", "median", "most_frequent"], default_value="mean")
cs = ConfigurationSpace()
cs.add_hyperparameter(strategy)
return cs
示例7: get_hyperparameter_search_space
def get_hyperparameter_search_space(dataset_properties=None):
cs = ConfigurationSpace()
n_estimators = Constant("n_estimators", 100)
criterion = CategoricalHyperparameter(
"criterion", ["gini", "entropy"], default_value="gini")
max_features = UniformFloatHyperparameter("max_features", 0, 1,
default_value=0.5)
max_depth = UnParametrizedHyperparameter(name="max_depth", value="None")
max_leaf_nodes = UnParametrizedHyperparameter("max_leaf_nodes", "None")
min_samples_split = UniformIntegerHyperparameter(
"min_samples_split", 2, 20, default_value=2)
min_samples_leaf = UniformIntegerHyperparameter(
"min_samples_leaf", 1, 20, default_value=1)
min_weight_fraction_leaf = UnParametrizedHyperparameter(
'min_weight_fraction_leaf', 0.)
min_impurity_decrease = UnParametrizedHyperparameter(
'min_impurity_decrease', 0.)
bootstrap = CategoricalHyperparameter(
"bootstrap", ["True", "False"], default_value="False")
cs.add_hyperparameters([n_estimators, criterion, max_features,
max_depth, max_leaf_nodes, min_samples_split,
min_samples_leaf, min_weight_fraction_leaf,
min_impurity_decrease, bootstrap])
return cs
示例8: get_hyperparameter_search_space
def get_hyperparameter_search_space(cls, dataset_properties=None,
default=None,
include=None,
exclude=None):
cs = ConfigurationSpace()
# Compile a list of legal preprocessors for this problem
available_preprocessors = cls.get_available_components(
data_prop=dataset_properties,
include=include, exclude=exclude)
if len(available_preprocessors) == 0:
raise ValueError(
"No rescaling algorithm found.")
if default is None:
defaults = ['min/max', 'standardize', 'none', 'normalize']
for default_ in defaults:
if default_ in available_preprocessors:
default = default_
break
preprocessor = CategoricalHyperparameter('__choice__',
list(
available_preprocessors.keys()),
default=default)
cs.add_hyperparameter(preprocessor)
for name in available_preprocessors:
preprocessor_configuration_space = available_preprocessors[name]. \
get_hyperparameter_search_space(dataset_properties)
cs = add_component_deepcopy(cs, name,
preprocessor_configuration_space)
return cs
示例9: get_hyperparameter_search_space
def get_hyperparameter_search_space(dataset_properties=None):
if dataset_properties is not None and \
(dataset_properties.get("sparse") is True or
dataset_properties.get("signed") is False):
allow_chi2 = False
else:
allow_chi2 = True
possible_kernels = ['poly', 'rbf', 'sigmoid', 'cosine']
if allow_chi2:
possible_kernels.append("chi2")
kernel = CategoricalHyperparameter('kernel', possible_kernels, 'rbf')
n_components = UniformIntegerHyperparameter(
"n_components", 50, 10000, default_value=100, log=True)
gamma = UniformFloatHyperparameter("gamma", 3.0517578125e-05, 8,
log=True, default_value=0.1)
degree = UniformIntegerHyperparameter('degree', 2, 5, 3)
coef0 = UniformFloatHyperparameter("coef0", -1, 1, default_value=0)
cs = ConfigurationSpace()
cs.add_hyperparameters([kernel, degree, gamma, coef0, n_components])
degree_depends_on_poly = EqualsCondition(degree, kernel, "poly")
coef0_condition = InCondition(coef0, kernel, ["poly", "sigmoid"])
gamma_kernels = ["poly", "rbf", "sigmoid"]
if allow_chi2:
gamma_kernels.append("chi2")
gamma_condition = InCondition(gamma, kernel, gamma_kernels)
cs.add_conditions([degree_depends_on_poly, coef0_condition, gamma_condition])
return cs
示例10: test_write_new_log10
def test_write_new_log10(self):
expected = "a real [10.0, 1000.0] [100.0]log"
cs = ConfigurationSpace()
cs.add_hyperparameter(
UniformFloatHyperparameter("a", 10, 1000, log=True))
value = pcs_new.write(cs)
self.assertEqual(expected, value)
示例11: get_hyperparameter_search_space
def get_hyperparameter_search_space(dataset_properties=None):
# TODO add replace by zero!
strategy = CategoricalHyperparameter(
"strategy", ["none", "weighting"], default_value="none")
cs = ConfigurationSpace()
cs.add_hyperparameter(strategy)
return cs
示例12: test_write_new_q_float
def test_write_new_q_float(self):
expected = "Q16_float_a real [16.0, 1024.0] [520.0]"
cs = ConfigurationSpace()
cs.add_hyperparameter(
UniformFloatHyperparameter("float_a", 16, 1024, q=16))
value = pcs_new.write(cs)
self.assertEqual(expected, value)
示例13: test_add_forbidden
def test_add_forbidden(self):
m = numpy.ones([2, 3])
preprocessors_list = ['pa', 'pb']
classifier_list = ['ca', 'cb', 'cc']
cs = ConfigurationSpace()
preprocessor = CategoricalHyperparameter(name='preprocessor',
choices=preprocessors_list)
classifier = CategoricalHyperparameter(name='classifier',
choices=classifier_list)
cs.add_hyperparameter(preprocessor)
cs.add_hyperparameter(classifier)
new_cs = autosklearn.pipeline.create_searchspace_util.add_forbidden(
conf_space=cs, node_0_list=preprocessors_list,
node_1_list=classifier_list, matches=m,
node_0_name='preprocessor', node_1_name="classifier")
self.assertEqual(len(new_cs.forbidden_clauses), 0)
self.assertIsInstance(new_cs, ConfigurationSpace)
m[1, 1] = 0
new_cs = autosklearn.pipeline.create_searchspace_util.add_forbidden(
conf_space=cs, node_0_list=preprocessors_list,
node_1_list=classifier_list, matches=m,
node_0_name='preprocessor', node_1_name="classifier")
self.assertEqual(len(new_cs.forbidden_clauses), 1)
self.assertEqual(new_cs.forbidden_clauses[0].components[0].value, 'cb')
self.assertEqual(new_cs.forbidden_clauses[0].components[1].value, 'pb')
self.assertIsInstance(new_cs, ConfigurationSpace)
示例14: get_hyperparameter_search_space
def get_hyperparameter_search_space(dataset_properties=None):
N = UniformIntegerHyperparameter("N", 5, 20, default=10)
precond = UniformFloatHyperparameter("precond", 0, 0.5, default=0.1)
cs = ConfigurationSpace()
cs.add_hyperparameter(N)
cs.add_hyperparameter(precond)
return cs
示例15: test_write_ordinal
def test_write_ordinal(self):
expected = "ord_a '--ord_a ' o {a,b,3}\n"
cs = ConfigurationSpace()
cs.add_hyperparameter(
OrdinalHyperparameter("ord_a", ["a", "b", 3]))
value = irace.write(cs)
self.assertEqual(expected, value)