当前位置: 首页>>代码示例>>Python>>正文


Python Block.enable方法代码示例

本文整理汇总了Python中CNC.Block.enable方法的典型用法代码示例。如果您正苦于以下问题:Python Block.enable方法的具体用法?Python Block.enable怎么用?Python Block.enable使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在CNC.Block的用法示例。


在下文中一共展示了Block.enable方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: make

# 需要导入模块: from CNC import Block [as 别名]
# 或者: from CNC.Block import enable [as 别名]
	def make(self,app, XStart=0.0, YStart=0.0, FlatWidth=10., FlatHeight=10., \
			FlatDepth=0, BorderPass=False, CutDirection="Climb", PocketType="Raster"):

		#GCode Blocks
		blocks = []

		#Check parameters
		if CutDirection is "":
			app.setStatus(_("Flatten abort: Cut Direction is undefined"))
			return

		if PocketType is "":
			app.setStatus(_("Flatten abort: Pocket Type is undefined"))
			return

		if FlatWidth <= 0 or FlatHeight <= 0 :
			app.setStatus(_("Flatten abort: Flatten Area dimensions must be > 0"))
			return

		if FlatDepth > 0 :
			app.setStatus(_("Flatten abort: Hey this is only for subtractive machine! Check depth!"))
			return

		#Add Region disabled to show worked area
		block = Block(self.name + " Outline")
		block.enable = False
		block.append(CNC.zsafe())
		xR,yR = self.RectPath(XStart,YStart,FlatWidth,FlatHeight)
		for x,y in zip(xR,yR):
			block.append(CNC.gline(x,y))
		blocks.append(block)

		# Load tool and material settings
		toolDiam = CNC.vars['diameter']
		toolRadius = toolDiam / 2.

		#Calc tool diameter with Maximum Step Over allowed
		StepOverInUnitMax = toolDiam * CNC.vars['stepover'] / 100.0

		#Offset for Border Cut
		BorderXStart = XStart + toolRadius
		BorderYStart = YStart + toolRadius
		BorderWidth = FlatWidth - toolDiam
		BorderHeight = FlatHeight - toolDiam
		BorderXEnd = XStart + FlatWidth - toolRadius
		BorderYEnd = YStart + FlatHeight - toolRadius

		PocketXStart = BorderXStart
		PocketYStart = BorderYStart
		PocketXEnd = BorderXEnd
		PocketYEnd = BorderYEnd

		#Calc space to work with/without border cut
		WToWork = FlatWidth - toolDiam
		HToWork = FlatHeight - toolDiam

		if(WToWork < toolRadius or HToWork < toolRadius):
			app.setStatus(_("Flatten abort: Flatten area is too small for this End Mill."))
			return

		#Prepare points for pocketing
		xP=[]
		yP=[]
        #and border
		xB=[]
		yB=[]

        #---------------------------------------------------------------------
        #Raster approach
		if PocketType == "Raster":
			#Correct sizes if border is used
			if(BorderPass):
				PocketXStart += StepOverInUnitMax
				PocketYStart += StepOverInUnitMax
				PocketXEnd -= StepOverInUnitMax
				PocketYEnd -= StepOverInUnitMax
				WToWork -= (StepOverInUnitMax)
				HToWork -= (StepOverInUnitMax)

			#Calc number of pass
			VerticalCount = (int)(HToWork / StepOverInUnitMax)
			#Calc step minor of Max step
			StepOverInUnit = HToWork / (VerticalCount +1)
			flip = False
			ActualY = PocketYStart
			#Zig zag
			if StepOverInUnit==0 : StepOverInUnit=0.001  #avoid infinite while loop
			while (True):
				#Zig
				xP.append(self.ZigZag(flip,PocketXStart,PocketXEnd))
				yP.append(ActualY)
				flip = not flip
				#Zag
				xP.append(self.ZigZag(flip,PocketXStart,PocketXEnd))
				yP.append(ActualY)
				if(ActualY >= PocketYEnd - StepOverInUnitMax + StepOverInUnit):
					break
				#Up
				ActualY += StepOverInUnit
				xP.append(self.ZigZag(flip,PocketXStart,PocketXEnd))
#.........这里部分代码省略.........
开发者ID:ThierryM,项目名称:bCNC,代码行数:103,代码来源:flatten.py

示例2: execute

# 需要导入模块: from CNC import Block [as 别名]
# 或者: from CNC.Block import enable [as 别名]

#.........这里部分代码省略.........
		fileName = self["File"]
		try:
			img = Image.open(fileName)
		except:
			app.setStatus(_("Halftone abort: Can't read image file"))
			return

		#Create a scaled image to work faster with big image and better with small ones
		squareNorm = True
		if channel == 'Blue(sqrt)':
			img = img.convert('RGB')
			img = img.split()[0]
		elif channel == 'Green(sqrt)':
			img = img.convert('RGB')
			img = img.split()[1]
		elif channel == 'Red(sqrt)':
			img = img.convert('RGB')
			img = img.split()[2]
		else:
			img = img.convert ('L') #to calculate luminance
			squareNorm = False

		 #flip image to ouput correct coordinates
		img = img.transpose(Image.FLIP_TOP_BOTTOM)

		#Calc divisions for halftone
		divisions = drawSize / cellSize
		#Get image size
		self.imgWidth, self.imgHeight =  img.size
		if (self.imgWidth > self.imgHeight):
			scale = drawSize / float(self.imgWidth)
			sample = int(self.imgWidth / divisions)
		else:
			scale = drawSize / float(self.imgHeight)
			sample = int(self.imgHeight / divisions)
		self.ratio = scale

		#Halftone
		circles = self.halftone(img, sample, scale, angle, squareNorm, invert)

		#Init blocks
		blocks = []

		#Border block
		if drawBorder:
			block = Block("%s-border"%(self.name))
			block.append(CNC.zsafe())
			block.append(CNC.grapid(0,0))
			block.append(CNC.zenter(depth))
			block.append(CNC.gcode(1, [("f",CNC.vars["cutfeed"])]))
			block.append(CNC.gline(self.imgWidth * self.ratio, 0))
			block.append(CNC.gline(self.imgWidth * self.ratio, self.imgHeight*self.ratio))
			block.append(CNC.gline(0, self.imgHeight*self.ratio))
			block.append(CNC.gline(0,0))
			blocks.append(block)

		#Draw block
		block = Block(self.name)

		#Change color
		if channel == 'Blue(sqrt)':
			block.color = "#0000ff"
		elif channel == 'Green(sqrt)':
			block.color = "#00ff00"
		elif channel == 'Red(sqrt)':
			block.color = "#ff0000"

		block.append("(Halftone size W=%d x H=%d x D=%d ,Total points:%i)" %
			 (self.imgWidth * self.ratio, self.imgHeight * self.ratio, depth, len(circles)))
		block.append("(Channel = %s)" % channel)

		for c in circles:
			x,y,r = c
			r = min(dMax/2.0,r)
			if (r >= dMin/2.):
				block.append(CNC.zsafe())
				block.append(CNC.grapid(x+r,y))
				block.append(CNC.zenter(depth))
				block.append(CNC.garc(CW,x+r,y,i=-r,))
		block.append(CNC.zsafe())
		if conical: block.enable = False
		blocks.append(block)

		if conical:
			blockCon = Block("%s-Conical"%(self.name))
			for c in circles:
				x,y,r = c
				blockCon.append(CNC.zsafe())
				blockCon.append(CNC.grapid(x,y))
				dv = r / math.tan(math.radians(v_angle/2.))
				blockCon.append(CNC.zenter(-dv))
			blockCon.append(CNC.zsafe())
			blocks.append(blockCon)

		#Gcode Zsafe
		active = app.activeBlock()
		app.gcode.insBlocks(active, blocks, "Halftone")
		app.refresh()
		app.setStatus(_("Generated Halftone size W=%d x H=%d x D=%d ,Total points:%i" %
			 (self.imgWidth * self.ratio, self.imgHeight * self.ratio, depth, len(circles))))
开发者ID:IonutGorgos,项目名称:bCNC,代码行数:104,代码来源:halftone.py

示例3: calc

# 需要导入模块: from CNC import Block [as 别名]
# 或者: from CNC.Block import enable [as 别名]

#.........这里部分代码省略.........
		a = 1.0 / Pd

		# Outside Circle
		Ro = R + a
		Do = 2.0 * Ro

		# Tooth thickness
		T = math.pi*D / (2*N)

		# undercut?
		U = 2.0 / (math.sin(phi) * (math.sin(phi)))
		needs_undercut = N < U
		# sys.stderr.write("N:%s R:%s Rb:%s\n" % (N,R,Rb))

		# Clearance
		c = 0.0
		# Dedendum
		b = a + c

		# Root Circle
		Rr = R - b
		Dr = 2.0*Rr

		two_pi = 2.0*math.pi
		half_thick_angle = two_pi / (4.0*N)
		pitch_to_base_angle = self.involute_intersect_angle(Rb, R)
		pitch_to_outer_angle = self.involute_intersect_angle(Rb, Ro) # pitch_to_base_angle

		points = []
		for x in range(1,N+1):
			c = x * two_pi / N

			# angles
			pitch1 = c - half_thick_angle
			base1  = pitch1 - pitch_to_base_angle
			outer1 = pitch1 + pitch_to_outer_angle

			pitch2 = c + half_thick_angle
			base2  = pitch2 + pitch_to_base_angle
			outer2 = pitch2 - pitch_to_outer_angle

			# points
			b1 = self.point_on_circle(Rb, base1)
			p1 = self.point_on_circle(R,  pitch1)
			o1 = self.point_on_circle(Ro, outer1)
			o2 = self.point_on_circle(Ro, outer2)
			p2 = self.point_on_circle(R,  pitch2)
			b2 = self.point_on_circle(Rb, base2)

			if Rr >= Rb:
				pitch_to_root_angle = pitch_to_base_angle - self.involute_intersect_angle(Rb, Rr)
				root1 = pitch1 - pitch_to_root_angle
				root2 = pitch2 + pitch_to_root_angle
				r1 = self.point_on_circle(Rr, root1)
				r2 = self.point_on_circle(Rr, root2)

				points.append(r1)
				points.append(p1)
				points.append(o1)
				points.append(o2)
				points.append(p2)
				points.append(r2)
			else:
				r1 = self.point_on_circle(Rr, base1)
				r2 = self.point_on_circle(Rr, base2)
				points.append(r1)
				points.append(b1)
				points.append(p1)
				points.append(o1)
				points.append(o2)
				points.append(p2)
				points.append(b2)
				points.append(r2)

		first = points[0]
		del points[0]

		blocks = []
		block = Block(self.name)
		blocks.append(block)

		block.append(CNC.grapid(first.x(), first.y()))
		block.append(CNC.zenter(0.0))
		#print first.x(), first.y()
		for v in points:
			block.append(CNC.gline(v.x(), v.y()))
			#print v.x(), v.y()
		#print first.x(), first.y()
		block.append(CNC.gline(first.x(), first.y()))
		block.append(CNC.zsafe())

		#block = Block("%s-center"%(self.name))
		block = Block("%s-basecircle"%(self.name))
		block.enable = False
		block.append(CNC.grapid(Db/2, 0.))
		block.append(CNC.zenter(0.0))
		block.append(CNC.garc(CW, Db/2, 0., i=-Db/2))
		block.append(CNC.zsafe())
		blocks.append(block)
		return blocks
开发者ID:multpix,项目名称:bCNC,代码行数:104,代码来源:gear.py

示例4: execute

# 需要导入模块: from CNC import Block [as 别名]
# 或者: from CNC.Block import enable [as 别名]
	def execute(self, app):
		try:
			from PIL import Image
		except:
			app.setStatus(_("Sketch abort: This plugin requires PIL/Pillow to read image data"))
			return

		n = self["name"]
		if not n or n=="default": n="Sketch"

		#Calc desired size
		grundgy =self["Grundgy"]
		maxSize = self["MaxSize"]
		squiggleTotal  = self["SquiggleTotal"]
		squiggleLength = self["SquiggleLength"]
		depth = self["Depth"]
		drawBorder = self["DrawBorder"]
		channel = self["Channel"]

		radius = 1
		if grundgy == "Low":
			radius = 2
		elif grundgy == "Medium":
			radius = 3
		elif grundgy == "High":
			radius = 6
		elif grundgy == "Very High":
			radius = 9

		#Check parameters
		if maxSize < 1:
			app.setStatus(_("Sketch abort: Too small to draw anything!"))
			return

		if squiggleTotal < 1:
			app.setStatus(_("Sketch abort: Please let me draw at least 1 squiggle"))
			return
			
		if squiggleLength <= 0:
			app.setStatus(_("Sketch abort: Squiggle Length must be > 0"))
			return

		fileName = self["File"]
		try:
			img = Image.open(fileName)
		except:
			app.setStatus(_("Sketch abort: Can't read image file"))
			return

		#Create a scaled image to work faster with big image and better with small ones
		iWidth,iHeight = img.size
		resampleRatio = 800.0 / iHeight
		img = img.resize((int(iWidth *resampleRatio) ,int(iHeight * resampleRatio)), Image.ANTIALIAS)
		if channel == 'Blue':
			img = img.convert('RGB')
			img = img.split()[0]
		elif channel == 'Green':
			img = img.convert('RGB')
			img = img.split()[1]
		elif channel == 'Red':
			img = img.convert('RGB')
			img = img.split()[2]
		else:
			img = img.convert ('L') #to calculate luminance

		img = img.transpose(Image.FLIP_TOP_BOTTOM) #ouput correct image
		pix = img.load()

		#Get image size
		self.imgWidth, self.imgHeight =  img.size
		self.ratio = 1
		if (iWidth > iHeight):
			self.ratio = maxSize / float(self.imgWidth)
		else:
			self.ratio = maxSize / float(self.imgHeight)

		#Init blocks
		blocks = []

		#Border block
		block = Block("%s-border"%(self.name))
		block.enable = drawBorder
		block.append(CNC.zsafe())
		block.append(CNC.grapid(0,0))
		block.append(CNC.zenter(depth))
		block.append(CNC.gcode(1, [("f",CNC.vars["cutfeed"])]))
		block.append(CNC.gline(self.imgWidth * self.ratio, 0))
		block.append(CNC.gline(self.imgWidth * self.ratio, self.imgHeight*self.ratio))
		block.append(CNC.gline(0, self.imgHeight*self.ratio))
		block.append(CNC.gline(0,0))
		blocks.append(block)

		#Draw block
		block = Block(self.name)
		block.append("(Sketch size W=%d x H=%d x distance=%d)" %
			 (self.imgWidth * self.ratio  , self.imgHeight * self.ratio  , depth))
		block.append("(Channel = %s)" %(channel))
		#choose a nice starting point
		x = self.imgWidth / 4.
		y = self.imgHeight / 4.
#.........这里部分代码省略.........
开发者ID:moacirbmn,项目名称:bCNC,代码行数:103,代码来源:sketch.py


注:本文中的CNC.Block.enable方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。