当前位置: 首页>>代码示例>>Python>>正文


Python SonicScrewdriver.pairtreelabel方法代码示例

本文整理汇总了Python中SonicScrewdriver.pairtreelabel方法的典型用法代码示例。如果您正苦于以下问题:Python SonicScrewdriver.pairtreelabel方法的具体用法?Python SonicScrewdriver.pairtreelabel怎么用?Python SonicScrewdriver.pairtreelabel使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SonicScrewdriver的用法示例。


在下文中一共展示了SonicScrewdriver.pairtreelabel方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: choose_cascade

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
def choose_cascade(htid):
    '''Reads metadata about this volume and uses it to decide what metadata-level features should be assigned.'''

    global rowindices, columns, metadata, modelindices, modeldata


    probablydrama = False
    probablypoetry = False
    probablybiography = False
    probablyfiction = False
    maybefiction = False

    htid = utils.pairtreelabel(htid)
    # convert the clean pairtree filename into a dirty pairtree label for metadata matching

    if htid not in rowindices:
        # We have no metadata for this volume.
        print("Volume missing from ExtractedMetadata.tsv: " + htid)

    else:
        genrestring = metadata["genres"][htid]
        genreinfo = genrestring.split(";")
        # It's a semicolon-delimited list of items.

        for info in genreinfo:

            if info == "Biography" or info == "Autobiography":
                probablybiography = True

            if info == "Fiction" or info == "Novel":
                probablyfiction = True

            if (info == "Poetry" or info == "Poems"):
                probablypoetry = True

            if (info == "Drama" or info == "Tragedies" or info == "Comedies"):
                probablydrama = True

    if htid in modelindices:

        title = metadata["title"][htid].lower()
        titlewords = title.split()

        maxgenre = maxoption((modeldata["bio"][htid], modeldata["dra"][htid], modeldata["fic"][htid], modeldata["non"][htid], modeldata["poe"][htid]))

        if maxgenre == 4 and "poems" in titlewords or "poetical" in titlewords:
            probablypoetry = True

        if maxgenre == 1:
            probablydrama = True

        if maxgenre == 2:
            maybefiction = True

    return probablybiography, probablydrama, probablyfiction, probablypoetry, maybefiction
开发者ID:tedunderwood,项目名称:HathiGenreTrainingset,代码行数:57,代码来源:MetadataSorter.py

示例2: get_metadata_evidence

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
def get_metadata_evidence(htid, rowindices, columns, metadata):
	'''Reads metadata about this volume and uses it to decide what metadata-level features should be assigned.'''

	metadata_evidence = dict()

	metadata_evidence["drama"] = False
	metadata_evidence["poetry"] = False
	metadata_evidence["biography"] = False
	metadata_evidence["fiction"] = False

	htid = utils.pairtreelabel(htid)
	# convert the clean pairtree filename into a dirty pairtree label for metadata matching

	if htid not in rowindices:
		# We have no metadata for this volume.
		return metadata_evidence

	else:
		genrestring = metadata["genres"][htid]
		genreinfo = genrestring.split(";")
		# It's a semicolon-delimited list of items.

		for info in genreinfo:

			if info == "Biography" or info == "Autobiography":
				metadata_evidence["biography"] = True

			if info == "Fiction" or info == "Novel":
				metadata_evidence["fiction"] = True

			if (info == "Poetry" or info == "Poems"):
				metadata_evidence["poetry"] = True

			if (info == "Drama" or info == "Tragedies" or info == "Comedies"):
				metadata_evidence["drama"] = True

	return metadata_evidence
开发者ID:cmchurch,项目名称:DataMunging,代码行数:39,代码来源:MultiNormalizeOCR.py

示例3: open

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
# We can perhaps enumerate currency terms intuitively, but not these.

alltargetwords = moneywords

sourcedir = "/Volumes/TARDIS/work/moneytexts/"
filelist = os.listdir(sourcedir)
filelist = [x for x in filelist if x.endswith(".txt")]
contexts = []

WINDOWRADIUS = 7

ctr = 0

for filename in filelist:

    htid = utils.pairtreelabel(filename.replace('.fic.txt', ''))

    if htid not in rows:
        print(htid)
        continue
    else:
        date = utils.simple_date(htid, table)

    filepath = os.path.join(sourcedir, filename)
    with open(filepath, encoding = 'utf-8') as f:
        filelines = f.readlines()
    pagelist = [filelines]

    # The wordcounter module expects a list of pages, each of which is a list of lines.
    # Ebooks have no pages -- at least as I currently receive them -- so we treat it
    # all as one giant page.
开发者ID:tedunderwood,项目名称:GenreProject,代码行数:33,代码来源:fifteenwordsnippets.py

示例4: passfilter

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
def passfilter(genrestring):
	fields = genrestring.split(';')
	if "Autobiography" in fields or "Biography" in fields:
		return False
	else:
		return True

rows19c, columns19c, table19c = utils.readtsv('/Volumes/TARDIS/work/metadata/19cMetadata.tsv')

rows20c, columns20c, table20c = utils.readtsv('/Volumes/TARDIS/work/metadata/20cMonographMetadata.tsv')

with open("/Users/tunder/Dropbox/GenreProject/python/piketty/roughfiction.txt", encoding = 'utf-8') as f:
	filelines = f.readlines()

idlist = [utils.pairtreelabel(x.split('\t')[0]) for x in filelines]

filteredrows = list()

missing = 0

for anid in idlist:
	if anid in rows19c:
		genrestring = table19c["genres"][anid]
		rowdict = dict()
		for col in columns19c:
			rowdict[col] = table19c[col][anid]
	elif anid in rows20c:
		genrestring = table20c["genres"][anid]
		rowdict = dict()
		for col in columns20c:
开发者ID:tedunderwood,项目名称:GenreProject,代码行数:32,代码来源:refine_fiction.py

示例5: extractgenres

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
def extractgenres(pathtotarfile, rows, columns, table):
    ''' Given a tarfile containing a bunch of jsons, this goes through all the jsons
    and identifies the ones that belong in filtered subsets for
    fiction, drama, and poetry. The cutoff is 95 percent precision, except for poetry,
    where it's 93.9, because the 95-percent threshold is hard to reach.

    We also write metadata for all jsons where maxgenre is drama, fiction, or poetry,
    including those that didn't reach threshold.
    '''

    fiction = list()
    drama = list()
    poetry = list()

    ficmeta = list()
    drameta = list()
    poemeta = list()

    tar = tarfile.open(pathtotarfile, 'r:gz')

    counter = 0
    for tarinfo in tar:
        counter += 1

        if tarinfo.isreg():
            # This is the name of a regular file rather than a directory.

            tardata = tar.extractfile(tarinfo.name)
            somebytes = tardata.read()
            astring = somebytes.decode('utf-8', 'strict')
            jobj = json.loads(astring)

            meta = jobj['hathi_metadata']
            stringdate = meta['inferred_date']
            htid = meta['htid']
            dirtyhtid = utils.pairtreelabel(htid)
            filename = htid + '.json'

            pathparts = tarinfo.name.split('/')
            if filename != pathparts[1]:
                print(filename)
                print('Is anomalous, because not equal to ' + pathparts[1])

            try:
                intdate = int(stringdate)
            except:
                intdate = 0
                print('Anomalous non-numeric date.')

            if 'drama' in jobj:
                dramadata = jobj['drama']
                precision = dramadata['[email protected]']
                probability = dramadata['prob_dra>80precise']
                if precision >= 0.95:
                    drama.append((intdate, filename, astring))
                    included = True
                else:
                    included = False

                if dirtyhtid in rows:
                    drameta.append(make_outrow(htid, dirtyhtid, probability, included, columns, table))
                else:
                    print('Missing htid: ' + htid)

            if 'fiction' in jobj:
                ficdata = jobj['fiction']
                precision = ficdata['[email protected]']
                probability = ficdata['prob_fic>80precise']
                if precision >= 0.95:
                    fiction.append((intdate, filename, astring))
                    included = True
                else:
                    included = False

                if dirtyhtid in rows:
                    ficmeta.append(make_outrow(htid, dirtyhtid, probability, included, columns, table))
                else:
                    print('Missing htid: ' + htid)

            if 'poetry' in jobj:
                poedata = jobj['poetry']
                precision = poedata['[email protected]']
                probability = poedata['prob_poe>80precise']
                if precision >= 0.939:
                    poetry.append((intdate, filename, astring))
                    included = True
                else:
                    included = False

                if dirtyhtid in rows:
                    poemeta.append(make_outrow(htid, dirtyhtid, probability, included, columns, table))

    tar.close()

    with open('/Volumes/TARDIS/maps/drama/drama_metadata.csv', mode='a', encoding = 'utf-8') as f:
        writer = csv.writer(f)
        for row in drameta:
            writer.writerow(row)

    with open('/Volumes/TARDIS/maps/fiction/fiction_metadata.csv', mode='a', encoding = 'utf-8') as f:
#.........这里部分代码省略.........
开发者ID:deepfriedrabbit,项目名称:genre,代码行数:103,代码来源:separategenres.py

示例6: list

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
fictionFPs = list()
fictionTNs = list()
fictionFNs = list()
dramaTPs = list()
dramaFPs = list()
dramaTNs = list()
dramaFNs = list()

genrefeatures = dict()
genreprecisions = dict()

modeledvols = dict()

for filename in predicts:
    mapname = filename.replace('.predict', '.map')
    labelid = utils.pairtreelabel(filename.replace('.predict', ''))
    fileid = filename.replace('.predict', '')

    if mapname in firstmaps:
        firstpath = os.path.join(firstsource, mapname)
        if os.path.isfile(firstpath):
            with open(firstpath, encoding = 'utf-8') as f:
                filelines = f.readlines()
                success = True
            wordcounts = firstwordcounts[fileid]
        else:
            success = False
    elif mapname in secondmaps:
        secondpath = os.path.join(secondsource, mapname)
        if os.path.isfile(secondpath):
            with open(secondpath, encoding = 'utf-8') as f:
开发者ID:deepfriedrabbit,项目名称:genre,代码行数:33,代码来源:logisticconfidence.py

示例7: list

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
import os, sys
import SonicScrewdriver as utils
import random

rowindices, columns, metadata = utils.readtsv("/Users/tunder/Dropbox/PythonScripts/hathimeta/ExtractedMetadata.tsv")

initialsample = random.sample(rowindices, 2000)

directorylist = os.listdir("/Users/tunder/Dropbox/pagedata/mixedtraining/pagefeatures")
existingfiles = list()

for filename in directorylist:
	if filename.startswith(".") or filename.startswith("_"):
		continue

	htid = utils.pairtreelabel(filename[0:-7])
	existingfiles.append(htid)

counter = 0
toremove = list()
for htid in initialsample:
	if htid in existingfiles:
		counter +=1
		toremove.append(htid)

print("Found " + str(counter) + " duplicates.")
for htid in toremove:
	initialsample.remove(htid)

genresrepresented = set()
for htid in initialsample:
开发者ID:tedunderwood,项目名称:HathiGenreTrainingset,代码行数:33,代码来源:RandomSample.py

示例8: choose_cascade

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
def choose_cascade(htid):
    '''Reads metadata about this volume and uses it to decide what metadata-level features should be assigned.'''

    global rowindices, columns, metadata, litlocs, biolocs


    probablydrama = False
    probablypoetry = False
    probablybiography = False
    probablyfiction = False

    htid = utils.pairtreelabel(htid)
    # convert the clean pairtree filename into a dirty pairtree label for metadata matching

    if htid not in rowindices:
        # We have no metadata for this volume.
        print("Volume missing from ExtractedMetadata.tsv: " + htid)

    else:
        genrestring = metadata["genres"][htid]
        genreinfo = genrestring.split(";")
        # It's a semicolon-delimited list of items.

        for info in genreinfo:

            if info == "Biography" or info == "Autobiography":
                probablybiography = True

            if info == "Fiction" or info == "Novel":
                probablyfiction = True

            if (info == "Poetry" or info == "Poems"):
                probablypoetry = True

            if (info == "Drama" or info == "Tragedies" or info == "Comedies"):
                probablydrama = True

        title = metadata["title"][htid].lower()
        titlewords = title.split()

        if "poems" in titlewords or "ballads" in titlewords or "poetical" in titlewords:
            probablypoetry = True

        loc = metadata["LOCnum"][htid]

        LC = letterpart(loc)

        if LC in litlocs:
            litprob = litlocs[LC]
            print(LC + " lit: " + str(litprob))
        else:
            litprob = 120
            print(LC)

        if LC in biolocs:
            bioprob = biolocs[LC]
            print(LC + " bio: " + str(bioprob))
        else:
            bioprob = 120
            print(LC)


    return probablybiography, probablydrama, probablyfiction, probablypoetry, litprob, bioprob
开发者ID:tedunderwood,项目名称:HathiGenreTrainingset,代码行数:65,代码来源:MetadataFeatures.py

示例9: comparelists

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
	for reading in listoftuples:
		readera = reading[0]
		predictedgenres = reading[1]

		divergence = comparelists(predictedgenres, truegenres, genremistakes, correctbygenre, wordcounts)
		totaldivergence += divergence

	agreement = (potentialcomparisons - totaldivergence)
	agreementpercent = agreement / potentialcomparisons
	volumepercents[htid] = agreementpercent
	overallcomparisons += potentialcomparisons
	overallagreement += agreement

print("Average human agreement: " + str(overallagreement / overallcomparisons))

with open("/Users/tunder/Dropbox/pagedata/interrater/HumanDissensus.tsv", mode="w", encoding = "utf-8") as f:
	f.write("htid\tagreement\n")
	for key, value in volumepercents.items():
		outline = utils.pairtreelabel(key) + "\t" + str(value) + "\n"
		f.write(outline)

import ConfusionMatrix
ConfusionMatrix.confusion_matrix(correctbygenre, genremistakes)







开发者ID:deepfriedrabbit,项目名称:genre,代码行数:25,代码来源:HumanDissensus.py

示例10: open

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
# good reason.

alltargetwords = moneywords

sourcedir = "/Users/tunder/Dropbox/GenreProject/python/piketty2/anova/"
filelist = os.listdir(sourcedir)
filelist = [x for x in filelist if x.endswith(".txt")]
contexts = []

WINDOWRADIUS = 12

ctr = 0

for filename in filelist:

    htid = utils.pairtreelabel(filename.replace('.norm.txt', ''))

    if htid not in rows:
        print(htid + ' MISSING')
        continue
    else:
        date = utils.simple_date(htid, table)

    filepath = os.path.join(sourcedir, filename)
    with open(filepath, encoding = 'utf-8') as f:
        filelines = f.readlines()
    pagelist = [filelines]

    tokenstream = tokenizer.makestream(pagelist)

    newcontexts = tokenizer.extract_snippets(tokenstream,  WINDOWRADIUS, alltargetwords)
开发者ID:tedunderwood,项目名称:GenreProject,代码行数:33,代码来源:extract_snippets.py

示例11: censor

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
def censor(htid, genresequence):

	htid = utils.pairtreelabel(htid)
	# convert the htid into a dirty pairtree label for metadata matching

	# Create a dictionary with entries for all possible conditions, initially set negative.
	symptoms = ["weakconfirmation", "weakdenial", "strongconfirmation", "strongdenial", "modelagrees", "modeldisagrees"]
	reported = dict()
	for symptom in symptoms:
		reported[symptom] = 0

	couldbefiction = True

	# Now we need to assess the largest genre in this volume.
	genrecounts = dict()
	genrecounts['fic'] = 0
	genrecounts['poe'] = 0
	genrecounts['dra'] = 0
	genrecounts['non'] = 0

	for page in genresequence:
		indexas = page

		# For this purpose, we treat biography and indexes as equivalent to nonfiction.
		if page == "bio" or page == "index" or page == "back":
			indexas = "non"

		utils.addtodict(indexas, 1, genrecounts)

	# Convert the dictionary of counts into a sorted list, and take the max.
	genretuples = utils.sortkeysbyvalue(genrecounts, whethertoreverse = True)
	maxgenre = genretuples[0][1]

	if htid not in rowindices and htid not in modelindices:
		return genresequence, reported

	if htid in rowindices:

		genrestring = metadata["genres"][htid]
		genreinfo = genrestring.split(";")
		# It's a semicolon-delimited list of items.

		for info in genreinfo:

			if info == "Biography" or info == "Autobiography":
				couldbefiction = False

			if info == "biog?" and maxgenre == "non":
				reported["weakconfirmation"] = 1
			if info == "biog?" and maxgenre != "non":
				reported["weakdenial"] = 1

			if info == "Not fiction" and maxgenre == "non":
				reported["weakconfirmation"] = 1
			if info == "Not fiction" and maxgenre == "fic":
				reported["weakdenial"] = 1

			if (info == "Fiction" or info == "Novel") and maxgenre == "fic":
				reported["strongconfirmation"] = 1
			if (info == "Fiction" or info == "Novel") and maxgenre != "fic":
				reported["strongdenial"] = 1

			if info == "Biography" and maxgenre == "non":
				reported["strongconfirmation"] = 1
			if info == "Biography" and maxgenre != "non":
				reported["strongdenial"] = 1

			if info == "Autobiography" and maxgenre == "non":
				reported["strongconfirmation"] = 1
			if info == "Autobiography" and maxgenre != "non":
				reported["strongdenial"] = 1

			if (info == "Poetry" or info == "Poems") and maxgenre == "poe":
				reported["strongconfirmation"] = 1
			if (info == "Poetry" or info == "Poems") and maxgenre != "poe":
				reported["strongdenial"] = 1

			if (info == "Drama" or info == "Tragedies" or info == "Comedies") and maxgenre == "dra":
				reported["strongconfirmation"] = 1
			if (info == "Drama" or info == "Tragedies" or info == "Comedies") and maxgenre != "dra":
				reported["strongdenial"] = 1

			if (info == "Catalog" or info == "Dictionary" or info=="Bibliographies") and maxgenre == "non":
				reported["strongconfirmation"] = 1
				couldbefiction = False
			if (info == "Catalog" or info == "Dictionary" or info=="Bibliographies") and maxgenre != "non":
				reported["strongdenial"] = 1
	else:
		print("Skipped.")

	if htid in modelindices:

		modelpredictions = dict()
		for genre, genrecolumn in modeldata.items():
			if not genre in options:
				# this column is not a genre!
				continue
			modelpredictions[genre] = float(genrecolumn[htid])
		predictionlist = utils.sortkeysbyvalue(modelpredictions, whethertoreverse = True)
		modelprediction = predictionlist[0][1]
#.........这里部分代码省略.........
开发者ID:tedunderwood,项目名称:HathiGenreTrainingset,代码行数:103,代码来源:MetadataCensor.py

示例12: choose_cascade

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
def choose_cascade(htid, pagepredictions):
    '''Reads metadata about this volume and uses it, combined with
    the thrust of page-level predictions, to decide what other models,
    if any, should be used to correct/adjust current predictions.

    Returns three boolean flags, indicating whether the volume is
    1) Mostly drama and poetry.
    2) Probably biography.
    3) Probably fiction.

    It's entirely conceivable that more than one of these flags could be true
    at the same time. In that case no cascade will be applied, because we have
    inconsistent/untrustworthy evidence.'''

    global rowindices, columns, metadata

    genresequence = [x for x in pagepredictions]
    # Make a defensive copy of current page predictions

    # Then count genres.
    genrecounts, maxgenre = sequence_to_counts(genresequence)

    if genrecounts['fic'] > 0 and genrecounts['fic'] < (len(genresequence) / 3):
        notfiction = True
    else:
        notfiction = False

    if genrecounts['dra'] > 0 and (genrecounts['non'] > len(genresequence) / 2 or genrecounts['fic'] > len(genresequence) / 2 or genrecounts['poe'] > len(genresequence) * .9):
        notdrama = True
    else:
        notdrama = False


    # Use those counts to decide whether the volume is more than 50% drama and/or poetry.
    if (genrecounts['dra'] + genrecounts['poe']) > (len(genresequence) / 2):
        mostlydrapoe = True
    else:
        mostlydrapoe = False

    # One other flag will be governed by existing metadata.

    probablyfiction = False
    probablybiography = False

    htid = utils.pairtreelabel(htid)
    # convert the clean pairtree filename into a dirty pairtree label for metadata matching

    if htid not in rowindices:
        # We have no metadata for this volume.
        print("Volume missing from ExtractedMetadata.tsv: " + htid)

    else:
        genrestring = metadata["genres"][htid]
        genreinfo = genrestring.split(";")
        # It's a semicolon-delimited list of items.

        for info in genreinfo:

            if info == "Biography" or info == "Autobiography":
                probablybiography = True

            if info == "Fiction" or info == "Novel":
                probablyfiction = True

            if (info == "Poetry" or info == "Poems"):
                mostlydrapoe = True

            if (info == "Drama" or info == "Tragedies" or info == "Comedies"):
                mostlydrapoe = True

        title = metadata["title"][htid].lower()
        titlewords = title.split()

        if "poems" in titlewords or "ballads" in titlewords or "poetical" in titlewords:
            mostlydrapoe = True

        if "comedy" in titlewords or "tragedy" in titlewords or "plays" in titlewords:
            mostlydrapoe = True

    return mostlydrapoe, probablybiography, probablyfiction, notdrama, notfiction
开发者ID:deepfriedrabbit,项目名称:genre,代码行数:82,代码来源:MetadataCascades.py

示例13: metadata_check

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
def metadata_check(htid, inputsequence):
    global options, rowindices, columns, metadata, modelindices, modelcolumns, modeldata
    '''Assesses whether previous metadata tend to deny or confirm the
    thrust of page-level genre predictions. For this purpose we use both
    genre codes extracted from the MARC record and the predictions of a volume-
    level probabilistic model.

    Returns two parameters: 1) a dictionary of "confirmations" that indicate
    whether metadata aligns with page-level predictions in six specific ways.
    2) The "maxgenre" or genre most commonly predicted at the page level.'''

    genresequence = [x for x in inputsequence]
    # make a defensive copy of incoming parameter

    htid = utils.pairtreelabel(htid)
    # convert the htid into a dirty pairtree label for metadata matching

    # Create a dictionary with entries for all possible conditions, initially set negative.
    symptoms = ["weakconfirmation", "weakdenial", "strongconfirmation", "strongdenial", "modelagrees", "modeldisagrees"]
    # The first four of these symptoms reflect metadata extracted from the MARC record. Weakconfirmation and
    # weakdenial are based on flags extracted from controlfield 008 which I find are not very reliable as guides.
    # Strongconfirmation and strongdenial are based on strings extracted from other fields that are more
    # specific and reliable as indications of genre. Modelagrees and modeldisagrees reflect the alignment of
    # page-level predictions with an earlier volume-level model of the corpus.

    confirmations = dict()
    for symptom in symptoms:
        confirmations[symptom] = 0

    genrecounts, maxgenre = sequence_to_counts(genresequence)

    if htid not in rowindices and htid not in modelindices:
        return confirmations

    if htid in rowindices:

        genrestring = metadata["genres"][htid]
        genreinfo = genrestring.split(";")
        # It's a semicolon-delimited list of items.

        for info in genreinfo:

            # if info == "biog?" and maxgenre == "non":
            #     confirmations["weakconfirmation"] = 1
            # if info == "biog?" and maxgenre != "non":
            #     confirmations["weakdenial"] = 1

            if info == "Not fiction" and maxgenre == "non":
                confirmations["weakconfirmation"] = 1
            if info == "Not fiction" and maxgenre == "fic":
                confirmations["weakdenial"] = 1

            if (info == "Fiction" or info == "Novel") and maxgenre == "fic":
                confirmations["strongconfirmation"] = 1
            if (info == "Fiction" or info == "Novel") and maxgenre != "fic":
                confirmations["strongdenial"] = 1

            if info == "Biography" and maxgenre == "non":
                confirmations["strongconfirmation"] = 1
            if info == "Biography" and maxgenre != "non":
                confirmations["strongdenial"] = 1

            if info == "Autobiography" and maxgenre == "non":
                confirmations["strongconfirmation"] = 1
            if info == "Autobiography" and maxgenre != "non":
                confirmations["strongdenial"] = 1

            if (info == "Poetry" or info == "Poems") and maxgenre == "poe":
                confirmations["strongconfirmation"] = 1
            if (info == "Poetry" or info == "Poems") and maxgenre != "poe":
                confirmations["strongdenial"] = 1

            if (info == "Drama" or info == "Tragedies" or info == "Comedies") and maxgenre == "dra":
                confirmations["strongconfirmation"] = 1
            if (info == "Drama" or info == "Tragedies" or info == "Comedies") and maxgenre != "dra":
                confirmations["strongdenial"] = 1

            if (info == "Catalog" or info == "Dictionary" or info=="Bibliographies") and maxgenre == "non":
                confirmations["strongconfirmation"] = 1
                couldbefiction = False
            if (info == "Catalog" or info == "Dictionary" or info=="Bibliographies") and maxgenre != "non":
                confirmations["strongdenial"] = 1
    else:
        print("Skipped.")

    if htid in modelindices:

        modelpredictions = dict()
        for genre, genrecolumn in modeldata.items():
            if not genre in options:
                # this column is not a genre!
                continue
            modelpredictions[genre] = float(genrecolumn[htid])
        predictionlist = utils.sortkeysbyvalue(modelpredictions, whethertoreverse = True)
        modelprediction = predictionlist[0][1]
        modelconfidence = predictionlist[0][0]
        nextclosest = predictionlist[1][0]
        # Take the top prediction.

        # For purposes of this routine, treat biography as nonfiction:
#.........这里部分代码省略.........
开发者ID:deepfriedrabbit,项目名称:genre,代码行数:103,代码来源:MetadataCascades.py

示例14: logitpredict

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
predictions = logitpredict(parameters, data)

# with open("/Volumes/TARDIS/output/models/results.txt", mode ="w") as f:
# 	for idx, prediction in enumerate(predictions):
# 		f.write(str(idx) + '\t' + data.index[idx] + '\t' + str(prediction) + '\n')

# This will also do it more easily:

# with open("/Volumes/TARDIS/output/models/PredictAccuracy.p", mode = "r+b") as f:
# 	model = pickle.load(f)

# otherpredictions = model.predict(data)

import SonicScrewdriver as utils

indices = [utils.pairtreelabel(x) for x in data.index]

decorated = [x for x in zip(predictions, indices)]
decorated.sort()
sortedpredictions, sortedindices = zip(*decorated)

with open("/Users/tunder/Dropbox/PythonScripts/hathimeta/ExtractedMetadata.tsv", mode = "r", encoding = "utf-8") as f:
	filelines = f.readlines()

linedict=dict()
for line in filelines[1:]:
	line = line.rstrip()
	fields = line.split('\t')
	headlessline = '\t'.join(fields[1:])
	linedict[fields[0]] = headlessline
开发者ID:tedunderwood,项目名称:HathiGenreTrainingset,代码行数:32,代码来源:PredictAccuracy.py

示例15: list

# 需要导入模块: import SonicScrewdriver [as 别名]
# 或者: from SonicScrewdriver import pairtreelabel [as 别名]
import os, sys
import SonicScrewdriver as utils

rowindices, columns, metadata = utils.readtsv("/Users/tunder/Dropbox/pagedata/metascrape/EnrichedMetadata.tsv")

sourcedir = "/Users/tunder/Dropbox/pagedata/newfeatures/oldfeatures/"

dirlist = os.listdir(sourcedir)

htids = list()

ctr = 0
with open("/Users/tunder/Dropbox/pagedata/trainingmeta.tsv", mode="w", encoding="utf-8") as f:
	for filename in dirlist:

	    if len(filename) > 7 and not filename.startswith("."):
	        stripped = filename[:-7]
	        htid = utils.pairtreelabel(stripped)
	        outline = ""
	        for column in columns:
	        	outline = outline + metadata[column][htid] + '\t'
	        f.write(outline + "\n")
开发者ID:tedunderwood,项目名称:HathiGenreTrainingset,代码行数:24,代码来源:MakeTrainmeta.py


注:本文中的SonicScrewdriver.pairtreelabel方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。