本文整理汇总了Python中Preprocess.get_i_fold方法的典型用法代码示例。如果您正苦于以下问题:Python Preprocess.get_i_fold方法的具体用法?Python Preprocess.get_i_fold怎么用?Python Preprocess.get_i_fold使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Preprocess
的用法示例。
在下文中一共展示了Preprocess.get_i_fold方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import Preprocess [as 别名]
# 或者: from Preprocess import get_i_fold [as 别名]
def main():
target = 'v2'
# training parameter
k = 10 # fold
layer_thresh = 2
T = 50
threshes_path = 'data/spambase.threshes'
# laod and preprocess training data
training_data = loader.load_dataset('data/spambase.data')
# load thresholds
threshes = loader.load_pickle_file(threshes_path)
# start training
k_folds = Preprocess.prepare_k_folds(training_data, k)
tr_data, te_data = Preprocess.get_i_fold(k_folds, 0)
f_cur = [x[0] for x in tr_data[0]]
t = dt.DecisionTree()
if target == 'v1':
for i in range(100):
h_y = t.compute_entropy(tr_data[1])
thresh = threshes[0][30]
ig = t.compute_ig(f_cur, tr_data[1], thresh, h_y)
else:
h_y = t.compute_entropy_v2(tr_data[1])
thresh = threshes[0][0]
ig = t.compute_ig_v2(f_cur, tr_data[1], thresh, h_y)
示例2: main
# 需要导入模块: import Preprocess [as 别名]
# 或者: from Preprocess import get_i_fold [as 别名]
def main():
# training parameter
is_sklearn = True
k = 10 # fold
result_path = 'results/PB2_spam.acc'
model_name = 'spam_' + str(k) + 'fold'
data_path = 'data/spam/data.pickle'
# laod and preprocess training data
training_data = loader.load_pickle_file(data_path)
# TODO convert labels from {0, 1} to {-1, 1}
# util.replace_zero_label_with_neg_one(training_data)
# Preprocess.normalize_features_all(Preprocess.zero_mean_unit_var, training_data[0])
# training_data[0] = preprocessing.scale(training_data[0])
# start training
training_errs = []
testing_errs = []
print('Preparing k fold data.')
k_folds = Preprocess.prepare_k_folds(training_data, k)
for i in (0,):
st = time.time()
tr_data, te_data = Preprocess.get_i_fold(k_folds, i)
# start training
print('{:.2f} Start training.'.format(time.time() - st))
kernel = c.EUCLIDEAN
# kernel = c.GAUSSIAN
f_select = True
best_features_num = 5
clf = kNN.kNN(kernel=kernel)
clf.fit(tr_data[0], tr_data[1], f_select=f_select, best_f=best_features_num)
print("Best features: {}".format(clf.best_f_indices))
for kk in (1, 2, 3, 7):
tr_pred = clf.predict(tr_data[0], k=kk)
te_pred = clf.predict(te_data[0], k=kk)
tr_acc = (tr_data[1] == tr_pred).sum() / tr_data[0].shape[0]
te_acc = (te_data[1] == te_pred).sum() / te_data[0].shape[0]
print('{} Final results with kernel {}, k={}. Train acc: {}, Test acc: {}'.format(time.time() - st, kernel, kk, tr_acc, te_acc))
示例3: main
# 需要导入模块: import Preprocess [as 别名]
# 或者: from Preprocess import get_i_fold [as 别名]
def main():
# training parameter
k = 8 # fold
result_path = 'results/PB2_spam.acc'
model_name = 'spam_' + str(k) + 'fold'
data_path = 'data/spam/data.pickle'
# laod and preprocess training data
training_data = loader.load_pickle_file(data_path)
# TODO convert labels from {0, 1} to {-1, 1}
# util.replace_zero_label_with_neg_one(training_data)
Preprocess.normalize_features_all(Preprocess.zero_mean_unit_var, training_data[0])
# Preprocess.normalize_features_all(Preprocess.shifiat_and_scale, training_data[0])
# start training
training_accs = []
testing_accs = []
print('Preparing k fold data.')
k_folds = Preprocess.prepare_k_folds(training_data, k)
kernel = c.EUCLIDEAN
sst = time.time()
for i in (1,):
st = time.time()
tr_data, te_data = Preprocess.get_i_fold(k_folds, i)
# start training
print('{:.2f} Start training.'.format(time.time() - st))
for r in (2.5, 2.7):
clf = kNN.kNN(kernel=kernel)
# clf.fit(training_data[0], training_data[1])
clf.fit(tr_data[0], tr_data[1])
# tr_pred = clf.predict(training_data[0], r=r)
tr_pred = clf.predict(tr_data[0], r=r)
te_pred = clf.predict(te_data[0], r=r)
# tr_acc = (training_data[1] == tr_pred).sum() / training_data[0].shape[0]
tr_acc = (tr_data[1] == tr_pred).sum() / tr_data[0].shape[0]
te_acc = (te_data[1] == te_pred).sum() / te_data[0].shape[0]
testing_accs.append(te_acc)
print('{} {}-fold results with kernel {}, r={}. Train acc: {}, Test acc: {}'.format(time.time() - st, i, kernel, r, tr_acc, te_acc))
示例4: main
# 需要导入模块: import Preprocess [as 别名]
# 或者: from Preprocess import get_i_fold [as 别名]
def main():
# training parameter
k = 10 # fold
result_path = "results/PB1_A_spam.acc"
model_name = "spam_" + str(k) + "fold"
threshes_path = "data/spambase.threshes"
data_path = "data/spam/data.pickle"
# kernel = 'poly'
kernel = "linear"
# kernel = 'rbf'
verbose = False
tol = 0.01
c = 0.1
# laod and preprocess training data
training_data = loader.load_pickle_file(data_path)
# TODO convert labels from {0, 1} to {-1, 1}
util.replace_zero_label_with_neg_one(training_data)
# normalize
Preprocess.normalize_features_all(Preprocess.zero_mean_unit_var, training_data[0])
print("Preparing k fold data.")
k_folds = Preprocess.prepare_k_folds(training_data, k)
for i in range(1):
st = time.time()
tr_data, te_data = Preprocess.get_i_fold(k_folds, i)
# start training
print("{:3f} Start training. Kernel: {}".format(time.time() - st, kernel))
clf = svm.SVC(C=c, kernel=kernel, tol=tol, verbose=verbose)
# clf = svm.NuSVC(kernel=kernel, tol=tol, verbose=verbose)
clf.fit(tr_data[0], tr_data[1])
tr_pred = clf.predict(tr_data[0])
te_pred = clf.predict(te_data[0])
tr_acc = (tr_data[1] == tr_pred).sum() / tr_data[0].shape[0]
te_acc = (te_data[1] == te_pred).sum() / te_data[0].shape[0]
print("{:3f} Final results. Train acc: {}, Test acc: {}".format(time.time() - st, tr_acc, te_acc))
示例5: main
# 需要导入模块: import Preprocess [as 别名]
# 或者: from Preprocess import get_i_fold [as 别名]
def main():
# training parameter
round_limit = 50
result_path = 'results/spamActive_random_final_1.acc'
model_name = 'spam_active'
threshes_path = 'data/spambase.threshes'
# laod and preprocess training data
training_data = loader.load_dataset('data/spambase.data')
# TODO convert labels from {0, 1} to {-1, 1}
util.replace_zero_label_with_neg_one(training_data)
# load thresholds
threshes = loader.load_pickle_file(threshes_path)
# start training
training_errs = []
testing_errs = []
# round_err_1st_boost = None
# tr_errs_1st_boost = None
# te_errs_1st_boost = None
# te_auc_1st_boost = None
roc = []
auc = 0.0
k_folds = Preprocess.prepare_k_folds(training_data, 5)
tr_data_pool, te_data = Preprocess.get_i_fold(k_folds, 1)
data_set = DataSet.DataSet(tr_data_pool)
data_rates = (5, 10, 15, 20, 30, 50)
for c in data_rates:
tr_data = data_set.random_pick(c, False)
tr_n, f_d = np.shape(tr_data[0])
te_n, = np.shape(te_data[1])
# TODO prepare distribution
d = util.init_distribution(len(tr_data[0]))
# TODO compute thresholds cheat sheet
thresh_cs = util.pre_compute_threshes(tr_data[0], tr_data[1], threshes)
boost = b.Boosting(d)
testing_predict = np.zeros((1, te_n)).tolist()[0]
training_predict = np.zeros((1, tr_n)).tolist()[0]
round_tr_err = []
round_te_err = []
round_model_err = []
round_te_auc = []
converged = False
tol = 1e-5
te_auc = 2.
round = 0
while round < round_limit: # and not converged:
round += 1
boost.add_model(ds.DecisionStump, tr_data[0], tr_data[1], threshes, thresh_cs)
boost.update_predict(tr_data[0], training_predict)
boost.update_predict(te_data[0], testing_predict)
c_model_err = boost.model[-1].w_err
round_model_err.append(c_model_err)
c_f_ind = boost.model[-1].f_ind
c_thresh = boost.model[-1].thresh
c_tr_err = util.get_err_from_predict(training_predict, tr_data[1])
c_te_err = util.get_err_from_predict(testing_predict, te_data[1])
# TODO calculate the AUC for testing results
# c_te_auc = util.get_auc_from_predict(testing_predict, te_data[1])
round_tr_err.append(c_tr_err)
round_te_err.append(c_te_err)
# round_te_auc.append(c_te_auc)
print('Data {}% Round: {} Feature: {} Threshold: {:.3f} Round_err: {:.12f} Train_err: {:.12f} Test_err {:.12f} AUC {}'.format(c, round, c_f_ind, c_thresh, c_model_err, c_tr_err, c_te_err, 0))
# converged = abs(c_te_auc - te_auc) / te_auc <= tol
# te_auc = c_te_auc
training_errs.append(round_tr_err[-1])
testing_errs.append(round_te_err[-1])
# break # for testing
mean_training_err = np.mean(training_errs)
mean_testing_err = np.mean(testing_errs)
print('Training errs are:')
print(training_errs)
print('Mean training err is:')
print(mean_training_err)
print('Testing errs are:')
print(testing_errs)
print('Mean testing err is:')
print(mean_testing_err)
result = {}
result['Trainingerrs'] = training_errs
result['MeanTrainingAcc'] = mean_training_err
result['Testingerrs'] = testing_errs
result['MeanTestingAcc'] = mean_testing_err
# result['ROC'] = str(roc)
result['AUC'] = auc
# log the training result to file
util.write_result_to_file(result_path, model_name, result, True)
示例6: main
# 需要导入模块: import Preprocess [as 别名]
# 或者: from Preprocess import get_i_fold [as 别名]
def main():
# training parameter
k = 10 # fold
layer_thresh = 2
T = 50
result_path = 'results/spamDT_final.acc'
model_name = 'spam_' + str(k) + 'fold'
threshes_path = 'data/spambase.threshes'
# laod and preprocess training data
training_data = loader.load_dataset('data/spambase.data')
# load thresholds
threshes = loader.load_pickle_file(threshes_path)
# start training
training_errs = []
testing_errs = []
roc = []
auc = 0.0
k_folds = Preprocess.prepare_k_folds(training_data, k)
for i in range(1):
st = time.time()
tr_data, te_data = Preprocess.get_i_fold(k_folds, i)
tr_n, f_d = np.shape(tr_data[0])
te_n, = np.shape(te_data[1])
t = dt.DecisionTree()
t.build(tr_data[0], tr_data[1], threshes, layer_thresh)
# test the bagging model and compute testing acc
training_errs.append(t.test(tr_data[0], tr_data[1], util.acc))
testing_errs.append(t.test(te_data[0], te_data[1], util.acc))
print('Round {} finishes, time used: {}'.format(i, time.time() - st))
mean_training_err = np.mean(training_errs)
mean_testing_err = np.mean(testing_errs)
print(str(k) + '-fold validation done. Training errs are:')
print(training_errs)
print('Mean training err is:')
print(mean_training_err)
print('Testing errs are:')
print(testing_errs)
print('Mean testing err is:')
print(mean_testing_err)
result = {}
result['Fold'] = k
result['Trainingerrs'] = training_errs
result['MeanTrainingAcc'] = mean_training_err
result['Testingerrs'] = testing_errs
result['MeanTestingAcc'] = mean_testing_err
result['ROC'] = roc
result['AUC'] = auc
# log the training result to file
util.write_result_to_file(result_path, model_name, result, True)
示例7: range
# 需要导入模块: import Preprocess [as 别名]
# 或者: from Preprocess import get_i_fold [as 别名]
# laod and preprocess training data
training_data = loader.load_dataset('data/spambase.data')
# start training
training_accs = []
training_cms = []
testing_accs = []
testing_cms = []
roc = []
auc = 0.0
k_folds = Preprocess.prepare_k_folds(training_data, k)
means = loader.load_spam_mean('data/spam_mean')
for i in range(k):
tr_data, te_data = Preprocess.get_i_fold(k_folds, i)
model = m.NBBernoulli(means)
model.build(tr_data[0], tr_data[1])
training_test_res = model.test(tr_data[0], tr_data[1], util.compute_acc_confusion_matrix)
training_accs.append(training_test_res[0])
training_cms.append(training_test_res[1])
testing_test_res = model.test(te_data[0], te_data[1], util.compute_acc_confusion_matrix)
testing_accs.append(testing_test_res[0])
testing_cms.append(testing_test_res[1])
# calculate ROC on fold 1
if i == 1:
roc = model.calculate_roc(training_data[0], training_data[1])
示例8: main
# 需要导入模块: import Preprocess [as 别名]
# 或者: from Preprocess import get_i_fold [as 别名]
def main():
# training parameter
target = 'crx'
# target = 'vote'
k = 10 # fold
round_limit = 150
if target == 'crx':
result_path = 'results/crxBoosting_final_1.acc'
model_name = 'crx_' + str(k) + 'fold'
threshes_path = 'data/crx.threshes'
data_path = 'data/crx_parsed.data'
else:
result_path = 'results/voteBoosting_final.acc'
model_name = 'vote_' + str(k) + 'fold'
threshes_path = 'data/vote.threshes'
data_path = 'data/vote_parsed.data'
# laod and preprocess training data
training_data = loader.load_pickle_file(data_path)
# load thresholds
threshes = loader.load_pickle_file(threshes_path)
# start training
training_errs = []
testing_errs = []
round_err_1st_boost = None
tr_errs_1st_boost = None
te_errs_1st_boost = None
te_auc_1st_boost = None
roc = []
auc = 0.0
k_folds = Preprocess.prepare_k_folds(training_data, k)
for i in range(k):
tr_data, te_data = Preprocess.get_i_fold(k_folds, i)
tr_n, f_d = np.shape(tr_data[0])
te_n, = np.shape(te_data[1])
# TODO prepare distribution
d = util.init_distribution(len(tr_data[0]))
# TODO compute thresholds cheat sheet
thresh_cs = util.pre_compute_threshes_uci(tr_data[0], tr_data[1], threshes)
boost = b.Boosting(d)
testing_predict = np.zeros((1, te_n)).tolist()[0]
training_predict = np.zeros((1, tr_n)).tolist()[0]
round_tr_err = []
round_te_err = []
round_model_err = []
round_te_auc = []
converged = False
tol = 1e-5
te_auc = 2.
round = 0
while round < round_limit: # and not converged:
round += 1
boost.add_model(ds.DecisionStump, tr_data[0], tr_data[1], threshes, thresh_cs)
boost.update_predict(tr_data[0], training_predict)
boost.update_predict(te_data[0], testing_predict)
c_model_err = boost.model[-1].w_err
round_model_err.append(c_model_err)
c_f_ind = boost.model[-1].f_ind
c_thresh = boost.model[-1].thresh
c_tr_err = util.get_err_from_predict(training_predict, tr_data[1])
c_te_err = util.get_err_from_predict(testing_predict, te_data[1])
# TODO calculate the AUC for testing results
# c_te_auc = util.get_auc_from_predict(testing_predict, te_data[1])
# round_tr_err.append(c_tr_err)
# round_te_err.append(c_te_err)
# round_te_auc.append(c_te_auc)
print('Round: {} Feature: {} Threshold: {} Round_err: {:.12f} Train_err: {:.12f} Test_err {:.12f}'.format(round, c_f_ind, c_thresh, c_model_err, c_tr_err, c_te_err))
# converged = abs(c_te_auc - te_auc) / te_auc <= tol
# te_auc = c_te_auc
training_errs.append(c_tr_err)
testing_errs.append(c_te_err)
# if k == 0:
# round_err_1st_boost = round_model_err
# tr_errs_1st_boost = round_tr_err
# te_errs_1st_boost = round_te_err
# te_auc_1st_boost = round_te_auc
# break # for testing
mean_training_err = np.mean(training_errs)
mean_testing_err = np.mean(testing_errs)
print(str(k) + '-fold validation done. Training errs are:')
print(training_errs)
print('Mean training err is:')
print(mean_training_err)
print('Testing errs are:')
print(testing_errs)
print('Mean testing err is:')
print(mean_testing_err)
result = {}
result['Fold'] = str(k)
result['Trainingerrs'] = str(training_errs)
#.........这里部分代码省略.........
示例9: main
# 需要导入模块: import Preprocess [as 别名]
# 或者: from Preprocess import get_i_fold [as 别名]
#.........这里部分代码省略.........
# n = len(player_features)
#
#
# # 2D embedding of the digits dataset
# print("Computing embedding")
# player_features = manifold.SpectralEmbedding(n_components=2).fit_transform(player_features)
# print("Done.")
# construct new features as a team play style (currently a simple aggregation of all the players' play style)
print('{} Constructing new dataset...'.format(time.time() - st))
n_feature = n_p_feature * len(champ_tags_list)
features = []
label = []
flip = False # flag for flip win/lose every match
for mid, m in match_dict.items():
win_f = np.zeros((n_feature,))
loss_f = np.zeros((n_feature,))
team_f = [win_f, loss_f]
for t_ind, team in enumerate(m):
ct_count = np.zeros((6,)) # counts for each champion tag
for ind, pid in enumerate(team[c.TEAM_INFO_PLAYERS]):
champ_id = team[c.TEAM_INFO_CHAMPIONS][ind]
champ_tags = champ_tags_dict[champ_id]
for ct in champ_tags:
ct_ind = champ_tags_list.index(ct)
ct_count[ct_ind] += 1
start_col = 0 + ct_ind * n_p_feature
end_col = (ct_ind + 1) * n_p_feature
cur_pf = player_feature_dict_pre[pid][c.FEATURES][ct_ind]
# print("ct: {}, ct_ind: {}, start_col: {}, end_col: {}".format(ct, ct_ind, start_col, end_col))
# print(team_f[t_ind][start_col:end_col])
# print(cur_pf)
team_f[t_ind][start_col:end_col] += cur_pf
for ctc_ind, ctc in enumerate(ct_count):
start_col = 0 + ctc_ind * n_p_feature
end_col = (ctc_ind + 1) * n_p_feature
if ctc > 1:
team_f[t_ind][start_col:end_col] /= ctc
elif ctc == 0:
for pid in team[c.TEAM_INFO_PLAYERS]:
team_f[t_ind][start_col:end_col] += player_feature_dict_pre[pid][c.FEATURES][ctc_ind]
team_f[t_ind][start_col:end_col] /= 5
if np.random.random_sample() >= 0.5:
features.append(np.append(loss_f, win_f))
# features.append(loss_f - win_f)
label.append(-1)
else:
features.append(np.append(win_f, loss_f))
# features.append(win_f - loss_f)
label.append(1)
flip = not flip # flip the flag
features = np.array(features)
label = np.array(label)
# features = normalize(features)
# prepare training and testing set
print('{} Start training...'.format(time.time() - st))
k = 9
k_folds = Preprocess.prepare_k_folds([features, label], k)
for i in range(k):
tr_data, te_data = Preprocess.get_i_fold(k_folds, i)
tr_n, f_d = np.shape(tr_data[0])
te_n, = np.shape(te_data[1])
# train with some algorithm
# clf1 = LogisticRegression(random_state=123) # 0.57
cc = 0.01
kernel = 'rbf'
tol = 0.01
# clf1 = svm.SVC(C=cc, kernel=kernel, tol=tol) # rbf: 0.5,
# clf1 = KNeighborsClassifier(n_neighbors=4) # 3: 0.55, 4: 0.53
clf1 = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
algorithm="SAMME",
n_estimators=200)
clf1.fit(tr_data[0], tr_data[1])
tr_pred1 = clf1.predict(tr_data[0])
te_pred1 = clf1.predict(te_data[0])
# NN
# net = buildNetwork(, 3, 1)
tr_acc = (tr_pred1 == tr_data[1]).sum() / tr_n
te_acc = (te_pred1 == te_data[1]).sum() / te_n
print('Training acc: {}, Testing acc: {}'.format(tr_acc, te_acc))
示例10: main
# 需要导入模块: import Preprocess [as 别名]
# 或者: from Preprocess import get_i_fold [as 别名]
def main():
# training parameter
k = 10 # fold
round_limit = 100
result_path = 'results/spamODSBoosting_final.acc'
model_name = 'spam_' + str(k) + 'fold'
threshes_path = 'data/spambase.threshes'
# laod and preprocess training data
training_data = loader.load_dataset('data/spambase.data')
# TODO convert labels from {0, 1} to {-1, 1}
util.replace_zero_label_with_neg_one(training_data)
# load thresholds
threshes = loader.load_pickle_file(threshes_path)
# start training
training_errs = []
testing_errs = []
round_err_1st_boost = None
tr_errs_1st_boost = None
te_errs_1st_boost = None
te_auc_1st_boost = None
te_roc_1st_boost = None
roc = []
auc = 0.0
k_folds = Preprocess.prepare_k_folds(training_data, k)
for i in range(1):
tr_data, te_data = Preprocess.get_i_fold(k_folds, i)
tr_n, f_d = np.shape(tr_data[0])
te_n, = np.shape(te_data[1])
# TODO prepare distribution
d = util.init_distribution(len(tr_data[0]))
# TODO compute thresholds cheat sheet
thresh_cs = util.pre_compute_threshes(tr_data[0], tr_data[1], threshes)
boost = b.Boosting(d)
testing_predict = np.zeros((1, te_n)).tolist()[0]
training_predict = np.zeros((1, tr_n)).tolist()[0]
round_tr_err = []
round_te_err = []
round_model_err = []
round_te_auc = []
converged = False
tol = 1e-5
te_auc = 2.
round = 0
while round < round_limit: # and not converged:
round += 1
boost.add_model(ds.DecisionStump, tr_data[0], tr_data[1], threshes, thresh_cs)
boost.update_predict(tr_data[0], training_predict)
boost.update_predict(te_data[0], testing_predict)
c_model_err = boost.model[-1].w_err
round_model_err.append(c_model_err)
c_f_ind = boost.model[-1].f_ind
c_thresh = boost.model[-1].thresh
c_tr_err = util.get_err_from_predict(training_predict, tr_data[1])
c_te_err = util.get_err_from_predict(testing_predict, te_data[1])
# TODO calculate the AUC for testing results
c_te_auc = util.get_auc_from_predict(testing_predict, te_data[1])
round_tr_err.append(c_tr_err)
round_te_err.append(c_te_err)
round_te_auc.append(c_te_auc)
print('Round: {} Feature: {} Threshold: {} Round_err: {:.12f} Train_err: {:.12f} Test_err {:.12f} AUC {:.12f}'.format(round, c_f_ind, c_thresh, c_model_err, c_tr_err, c_te_err, c_te_auc))
converged = abs(c_te_auc - te_auc) / te_auc <= tol
te_auc = c_te_auc
training_errs.append(round_tr_err[-1])
testing_errs.append(round_te_err[-1])
if i == 0:
round_err_1st_boost = round_model_err
tr_errs_1st_boost = round_tr_err
te_errs_1st_boost = round_te_err
te_auc_1st_boost = round_te_auc
_, te_roc_1st_boost = util.get_auc_from_predict(testing_predict, te_data[1], True)
# break # for testing
mean_training_err = np.mean(training_errs)
mean_testing_err = np.mean(testing_errs)
print(str(k) + '-fold validation done. Training errs are:')
print(training_errs)
print('Mean training err is:')
print(mean_training_err)
print('Testing errs are:')
print(testing_errs)
print('Mean testing err is:')
print(mean_testing_err)
result = {}
result['Fold'] = k
result['Trainingerrs'] = training_errs
result['MeanTrainingAcc'] = mean_training_err
result['Testingerrs'] = testing_errs
result['MeanTestingAcc'] = mean_testing_err
result['1stBoostTrainingError'] = tr_errs_1st_boost
result['1stBoostTestingError'] = te_errs_1st_boost
result['1stBoostModelError'] = round_err_1st_boost
result['1stBoostTestingAUC'] = te_auc_1st_boost
#.........这里部分代码省略.........