当前位置: 首页>>代码示例>>Python>>正文


Python Pgplot.plotxy方法代码示例

本文整理汇总了Python中Pgplot.plotxy方法的典型用法代码示例。如果您正苦于以下问题:Python Pgplot.plotxy方法的具体用法?Python Pgplot.plotxy怎么用?Python Pgplot.plotxy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Pgplot的用法示例。


在下文中一共展示了Pgplot.plotxy方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_chi2_vs_sub

# 需要导入模块: import Pgplot [as 别名]
# 或者: from Pgplot import plotxy [as 别名]
 def plot_chi2_vs_sub(self, device='/xwin'):
     """
     plot_chi2_vs_sub(self, device='/xwin'):
         Plot (and return) an array showing the reduced-chi^2 versus
             the subband number.
     """
     # Sum the profiles in each subband
     profs = self.profs.sum(0)
     # Compute the averages and variances for the subbands
     avgs = profs.sum(1)/self.proflen
     vars = []
     for sub in range(self.nsub):
         var = 0.0
         if sub in self.killed_subbands:
             vars.append(var)
             continue
         for part in range(self.npart):
             if part in self.killed_intervals:
                 continue
             var += self.stats[part][sub][5] # foldstats prof_var
         vars.append(var)
     chis = Num.zeros(self.nsub, dtype='f')
     for ii in range(self.nsub):
         chis[ii] = self.calc_redchi2(prof=profs[ii], avg=avgs[ii], var=vars[ii])
     # Now plot it
     Pgplot.plotxy(chis, labx="Subband Number", laby="Reduced-\gx\u2\d",
                   rangey=[0.0, max(chis)*1.1], device=device)
     return chis
开发者ID:zhuww,项目名称:ubc_AI,代码行数:30,代码来源:prepfold.py

示例2: kuiper_uniform_test

# 需要导入模块: import Pgplot [as 别名]
# 或者: from Pgplot import plotxy [as 别名]
def kuiper_uniform_test(data, output=0):
    """
    kuiper_uniform_test(data, output=0):
       Conduct a Kuiper test on the data.  The data must be values
       within [0,1) (e.g. phases from a periodicity search).  They
       will be compared to a uniform distribution.  The return value
       is the probability that the data is uniformly distributed.
    """
    sdata = num.asarray(data)
    N = sdata.size
    sdata.sort()
    f0 = num.arange(N, dtype=num.float64)/N
    fn = (num.arange(N, dtype=num.float64)+1.0)/N
    Dp = (fn - sdata).max()
    Dm = (sdata - f0).max()
    D = Dp + Dm
    P = kuiper_prob(D, N)
    if (output):
        xs = (num.arange(N+3, dtype=num.float64)/(N+2.0)).repeat(2)[1:-1]
        ys = num.concatenate((num.asarray([0.0]), sdata, num.asarray([1.0]))).repeat(2)
        Pgplot.plotxy(ys, xs, rangex=[-0.03, 1.03], rangey=[-0.03, 1.03], aspect=1.0, 
                      labx="Fraction of Data", laby="Cumulative Value", width=2)
        Pgplot.plotxy(num.asarray([0.0, 1.0]), num.asarray([0.0, 1.0]), width=1)
        Pgplot.closeplot()
        print("Max distance between the cumulative distributions (D) = %.5g" % D)
        print("Prob the data is from the specified distrbution   (P) = %.3g" % P)
    return (D, P)
开发者ID:matteobachetti,项目名称:presto,代码行数:29,代码来源:kuiper.py

示例3: estimate_rz

# 需要导入模块: import Pgplot [as 别名]
# 或者: from Pgplot import plotxy [as 别名]
def estimate_rz(psr, T, show=0, device='/XWIN'):
    """
    estimate_rz(psr, T, show=0, device='/XWIN'):
        Return estimates of a pulsar's average Fourier freq ('r')
        relative to its nominal Fourier freq as well as its
        Fourier f-dot ('z') in bins, of a pulsar.
           'psr' is a psrparams structure describing the pulsar.
           'T' is the length of the observation in sec.
           'show' if true, displays plots of 'r' and 'z'.
           'device' if the device to plot to if 'show' is true.
    """
    startE = keplers_eqn(psr.orb.t, psr.orb.p, psr.orb.e, 1.0E-15)
    numorbpts = int(T / psr.orb.p + 1.0) * 1024 + 1
    dt = T / (numorbpts - 1)
    E = dorbint(startE, numorbpts, dt, psr.orb)
    z = z_from_e(E, psr, T)
    r = T/p_from_e(E, psr) - T/psr.p
    if show:
        times = np.arange(numorbpts) * dt
        Pgplot.plotxy(r, times, labx = 'Time', \
                      laby = 'Fourier Frequency (r)', device=device)
        if device=='/XWIN':
            print 'Press enter to continue:'
            i = raw_input()
        Pgplot.nextplotpage()
        Pgplot.plotxy(z, times, labx = 'Time',
                      laby = 'Fourier Frequency Derivative (z)', device=device)
        Pgplot.closeplot()
    return r.mean(), z.mean()
开发者ID:kernsuite-debian,项目名称:presto,代码行数:31,代码来源:__init__.py

示例4: plot_sumprof

# 需要导入模块: import Pgplot [as 别名]
# 或者: from Pgplot import plotxy [as 别名]
 def plot_sumprof(self, device='/xwin'):
     """
     plot_sumprof(self, device='/xwin'):
         Plot the dedispersed and summed profile.
     """
     if not self.__dict__.has_key('subdelays'):
         print "Dedispersing first..."
         self.dedisperse()
     normprof = self.sumprof - min(self.sumprof)
     normprof /= max(normprof)
     Pgplot.plotxy(normprof, labx="Phase Bins", laby="Normalized Flux",
                   device=device)
开发者ID:zhuww,项目名称:ubc_AI,代码行数:14,代码来源:prepfold.py

示例5: plot_chi2_vs_DM

# 需要导入模块: import Pgplot [as 别名]
# 或者: from Pgplot import plotxy [as 别名]
 def plot_chi2_vs_DM(self, loDM, hiDM, N=100, interp=0, device='/xwin'):
     """
     plot_chi2_vs_DM(self, loDM, hiDM, N=100, interp=0, device='/xwin'):
         Plot (and return) an array showing the reduced-chi^2 versus
             DM (N DMs spanning loDM-hiDM).  Use sinc_interpolation
             if 'interp' is non-zero.
     """
     # Sum the profiles in time
     sumprofs = self.profs.sum(0)
     if not interp:
         profs = sumprofs
     else:
         profs = Num.zeros(Num.shape(sumprofs), dtype='d')
     DMs = psr_utils.span(loDM, hiDM, N)
     chis = Num.zeros(N, dtype='f')
     subdelays_bins = self.subdelays_bins.copy()
     for ii, DM in enumerate(DMs):
         subdelays = psr_utils.delay_from_DM(DM, self.barysubfreqs)
         hifreqdelay = subdelays[-1]
         subdelays = subdelays - hifreqdelay
         delaybins = subdelays*self.binspersec - subdelays_bins
         if interp:
             interp_factor = 16
             for jj in range(self.nsub):
                 profs[jj] = psr_utils.interp_rotate(sumprofs[jj], delaybins[jj],
                                                     zoomfact=interp_factor)
             # Note: Since the interpolation process slightly changes the values of the
             # profs, we need to re-calculate the average profile value
             avgprof = (profs/self.proflen).sum()
         else:
             new_subdelays_bins = Num.floor(delaybins+0.5)
             for jj in range(self.nsub):
                 profs[jj] = psr_utils.rotate(profs[jj], int(new_subdelays_bins[jj]))
             subdelays_bins += new_subdelays_bins
             avgprof = self.avgprof
         sumprof = profs.sum(0)
         chis[ii] = self.calc_redchi2(prof=sumprof, avg=avgprof)
     # Now plot it
     Pgplot.plotxy(chis, DMs, labx="DM", laby="Reduced-\gx\u2\d", device=device)
     return (chis, DMs)
开发者ID:zhuww,项目名称:ubc_AI,代码行数:42,代码来源:prepfold.py

示例6: zeros

# 需要导入模块: import Pgplot [as 别名]
# 或者: from Pgplot import plotxy [as 别名]
     if tmpnumbins > numbins:  numbins = tmpnumbins
 # Powers averaged over orb.t as a function of orb.w
 pwrs_w = zeros((orbsperpt[ctype], numbins), Float32)
 for ct in range(orbsperpt[ctype]):
     wb = ct * 180.0 / orbsperpt[ctype]
     if debugout:  print('wb = '+repr(wb))
     psr = psrparams_from_list([pp, Pb, xb, ecc[ctype], wb, 0.0])
     for i in range(numffts):
         psr.orb.t = i * Tfft
         tmppwrs = spectralpower(gen_bin_response(0.0, numbetween,
                                                  psr.p, Tfft,
                                                  psr.orb, numbins))
         if debugout:  print('     tb = '+repr(psr.orb.t)+'  Max pow = '+\
            repr(max(tmppwrs)))
         if showplots:
             Pgplot.plotxy(tmppwrs)
             Pgplot.closeplot()
         pwrs_w[ct] = pwrs_w[ct] + tmppwrs
     if showsumplots:
         Pgplot.plotxy(pwrs_w[ct], title='power(w) averaged over orb.t')
         Pgplot.closeplot()
 pwrs_w = pwrs_w / numffts
 max_avg_pow = average(maximum.reduce(pwrs_w,1))
 if showsumplots:
     Pgplot.plotxy(add.reduce(pwrs_w), title='power(w) averaged over orb.t')
     Pgplot.closeplot()
 tim = clock() - stim
 if debugout:
     print('Time for this point was ',tim, ' s.')
 file.write('%8.6f  %10.5f  %10d  %13.9f\n' % \
            (pp, Tfft, int(Tfft/dt), max_avg_pow))
开发者ID:matteobachetti,项目名称:presto,代码行数:33,代码来源:monte_short.py

示例7: modf

# 需要导入模块: import Pgplot [as 别名]
# 或者: from Pgplot import plotxy [as 别名]
     wb, tp = 0.0, ct * Pb / orbsperpt[ctype]
 else:
     (orbf, orbi)  = modf(ct / sqrt(orbsperpt[ctype]))
     orbi = orbi / sqrt(orbsperpt[ctype])
     wb, tp = orbf * 180.0, Pb * orbi
 if debugout:
     print 'T = '+`T`+'  ppsr = '+`ppsr[y]`+\
           ' Pb = '+`Pb`+' xb = '+`xb`+' eb = '+\
           `eb`+' wb = '+`wb`+' tp = '+`tp`
 psr = psrparams_from_list([ppsr[y], Pb, xb, eb, wb, tp])
 psr_numbins = 2 * bin_resp_halfwidth(psr.p, T, psr.orb)
 psr_resp = gen_bin_response(0.0, 1, psr.p, T, psr.orb,
                             psr_numbins)
 if showplots:
     print "The raw response:"
     Pgplot.plotxy(spectralpower(psr_resp))
     Pgplot.closeplot()
 # The following places the nominative psr freq
 # approx in bin len(data)/2
 datalen = next2_to_n(psr_numbins * 2)
 if datalen < 1024: datalen = 1024
 data = zeros(datalen, 'F')
 lo = (len(data) - len(psr_resp)) / 2
 hi = lo + len(psr_resp)
 data[lo:hi] = array(psr_resp, copy=1)
 (tryr, tryz) = estimate_rz(psr, T, show=showplots)
 tryr = tryr + len(data) / 2.0
 numr = 200
 numz = 200
 dr = 0.5
 dz = 1.0
开发者ID:ChrisLaidler,项目名称:presto,代码行数:33,代码来源:monte_ffdot.py

示例8: min

# 需要导入模块: import Pgplot [as 别名]
# 或者: from Pgplot import plotxy [as 别名]
         template = sinc_interp.periodic_interp(template, numbins)[::oldlen]
 else:
     if gaussfitfile is not None:
         template = psr_utils.read_gaussfitfile(gaussfitfile, numbins)
     else:
         template = psr_utils.gaussian_profile(numbins, 0.0, gaussianwidth)
 # Normalize it
 template -= min(template)
 template /= max(template)
 # Rotate it so that it becomes a "true" template according to FFTFIT
 shift,eshift,snr,esnr,b,errb,ngood = measure_phase(template, template)
 template = psr_utils.fft_rotate(template, shift)
     
 # Determine the off-pulse bins
 if bkgd_vals is not None:
     Pgplot.plotxy(template, labx="Phase bins")
     Pgplot.plotxy(template[bkgd_vals], Num.arange(numbins)[bkgd_vals],
                   line=None, symbol=2, color='red')
     Pgplot.closeplot()
     offpulse_inds = bkgd_vals
     onpulse_inds = set(Num.arange(numbins)) - set(bkgd_vals)
 else:
     offpulse_inds = Num.compress(template<=bkgd_cutoff, Num.arange(numbins))
     onpulse_inds = Num.compress(template>bkgd_cutoff, Num.arange(numbins))
     Pgplot.plotxy(template)
     Pgplot.plotxy([bkgd_cutoff, bkgd_cutoff], [0.0, numbins], color='red')
     Pgplot.closeplot()
 # If the number of bins in the offpulse section is < 10% of the total
 # use the statistics in the .pfd file to set the RMS
 if (len(offpulse_inds) < 0.1*numbins):
     print "Number of off-pulse bins to use for RMS is too low.  Using .pfd stats."
开发者ID:ariofrio,项目名称:presto,代码行数:33,代码来源:sum_profiles.py

示例9: sqrt

# 需要导入模块: import Pgplot [as 别名]
# 或者: from Pgplot import plotxy [as 别名]
                    orbi = orbi / sqrt(orbsperpt[ctype])
                    wb, tp = orbf * 180.0, Pb * orbi

                # Generate the PSR response
                psr = psrparams_from_list([ppsr[y], Pb, xb, ecc[ctype], wb, tp])
                psr_numbins = 2 * bin_resp_halfwidth(psr.p, T, psr.orb)
                psr_resp = gen_bin_response(0.0, 1, psr.p, T, psr.orb,
                                            psr_numbins)
                if debugout:
                    print 'T = %9.3f  Pb = %9.3f  Ppsr = %9.7f' % \
                          (T, psr.orb.p, psr.p)

                newpows = slice_resp(psr, T, spectralpower(psr_resp))
                if showplots:
                    print "The raw response:"
                    Pgplot.plotxy(newpows)
                    Pgplot.closeplot()
                fftlen = len(newpows)
                noise = rng.sample(fftlen)
                tryamp[ct] = 500.0
                theo_sum_pow = powersum_at_sigma(detect_sigma,
                                                 int(T/psr.orb.p))
                if debugout:
                    print 'theo_sum_pow = ', theo_sum_pow
                newloop = 1
                tryamp[ct] = secant(mini_fft_sum_pows, tryamp[ct]/2,
                                    tryamp[ct], 0.01)
                # Pgplot.plotxy(spectralpower(fdata)[1:]/norm, \
                #              arange(len(fdata))*T/fftlen, \
                #              labx='Orbital Period (s))', \
                #              laby='Power')
开发者ID:ChrisLaidler,项目名称:presto,代码行数:33,代码来源:monte_sideb.py

示例10: len

# 需要导入模块: import Pgplot [as 别名]
# 或者: from Pgplot import plotxy [as 别名]
           presto.TWOPI*psr.orb.x/psr.p
     print ''
         
 # Create the data set
 cand = presto.orbitparams()
 m = 0
 comb = presto.gen_bin_response(0.0, 1, psr.p, T, psr.orb , 
                                presto.LOWACC, m)
 ind = len(comb)
 # The follwoing is performed automatically in gen_bin_resp() now
 # m = (ind / 2 + 10) * numbetween
 data = Numeric.zeros(3 * ind, 'F')
 data[ind:2*ind] = comb
 if showplots and not parallel:
     Pgplot.plotxy(presto.spectralpower(data), color='red',
                   title='Data', labx='Fourier Frequency',
                   laby='Relative Power')
     a = raw_input("Press enter to continue...")
     Pgplot.nextplotpage(1)
     
 # Perform the loops over the Keplerian parameters
 for job in range(numjobs):
     if parallel:
         myjob = work[myid]
     else:
         myjob = work[job]
     if myjob=='p':
         Dd = Dp
         psrref = psr.orb.p
     if myjob=='x':
         Dd = Dx
开发者ID:MilesCranmer,项目名称:presto,代码行数:33,代码来源:montebinopt.py

示例11: modf

# 需要导入模块: import Pgplot [as 别名]
# 或者: from Pgplot import plotxy [as 别名]
     wb, tp = 0.0, ct * Pb / orbsperpt[ctype]
 else:
     (orbf, orbi)  = modf(ct / sqrt(orbsperpt[ctype]))
     orbi = orbi / sqrt(orbsperpt[ctype])
     wb, tp = orbf * 180.0, Pb * orbi
 if debugout:
     print('T = '+repr(T)+'  ppsr = '+repr(ppsr[y])+\
           ' Pb = '+repr(Pb)+' xb = '+repr(xb)+' eb = '+\
           repr(eb)+' wb = '+repr(wb)+' tp = '+repr(tp))
 psr = psrparams_from_list([ppsr[y], Pb, xb, eb, wb, tp])
 psr_numbins = 2 * bin_resp_halfwidth(psr.p, T, psr.orb)
 psr_resp = gen_bin_response(0.0, 1, psr.p, T, psr.orb,
                             psr_numbins)
 if showplots:
     print("The raw response:")
     Pgplot.plotxy(spectralpower(psr_resp))
     Pgplot.closeplot()
 if searchtype == 'ffdot':
     # The following places the nominative psr freq
     # approx in bin len(data)/2
     datalen = next2_to_n(psr_numbins * 2)
     if datalen < 1024: datalen = 1024
     data = zeros(datalen, 'F')
     lo = (len(data) - len(psr_resp)) / 2
     hi = lo + len(psr_resp)
     data[lo:hi] = array(psr_resp, copy=1)
     (tryr, tryz) = estimate_rz(psr, T, show=showplots)
     tryr = tryr + len(data) / 2.0
     numr = 200
     numz = 200
     dr = 0.5
开发者ID:matteobachetti,项目名称:presto,代码行数:33,代码来源:montebinresp.py


注:本文中的Pgplot.plotxy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。