本文整理汇总了Python中PerceptMesh.new_mesh方法的典型用法代码示例。如果您正苦于以下问题:Python PerceptMesh.new_mesh方法的具体用法?Python PerceptMesh.new_mesh怎么用?Python PerceptMesh.new_mesh使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PerceptMesh
的用法示例。
在下文中一共展示了PerceptMesh.new_mesh方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_fieldFunction_demo_2
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_fieldFunction_demo_2(self):
eMesh = PerceptMesh()
eMesh.new_mesh(GMeshSpec("3x3x3|bbox:0,0,0,1,1,1"))
vectorDimension = 0
eMesh.add_field("coords_mag_field", FEMMetaData.NODE_RANK, vectorDimension)
eMesh.commit()
f_coords = eMesh.get_field("coordinates")
coords_mag_field = eMesh.get_field("coords_mag_field")
ff_coords = FieldFunction("ff_coords", f_coords, eMesh, 3, 3)
eval_vec3_print(0.1,0.1,0.1,0.0,ff_coords)
coords_mag_sf = StringFunction("sqrt(x*x + y*y + z*z)" , "coords_mag_sf", 3, 1)
x = 0.123
y = 0.234
z = 0.345
vv = sqrt(x*x + y*y + z*z)
v1 = eval_func(x,y,z,0,coords_mag_sf)
print "vv = ", vv, "== v1 = ", v1
self.assertEqual(vv, v1)
coords_mag_field_function = FieldFunction("coords_mag_field_function", coords_mag_field, eMesh, 3, 1)
coords_mag_field_function.interpolateFrom(coords_mag_sf)
eMesh.save_as("./cubehex8_withCoordMag_out.e")
ff_coords.add_alias("mc")
sfcm = StringFunction("sqrt(mc[0]*mc[0]+mc[1]*mc[1]+mc[2]*mc[2])", "sfcm", 3, 1)
示例2: test_hex27_hex27_0
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_hex27_hex27_0(self):
fixture_setup()
scalarDimension = 0
eMesh = PerceptMesh()
p_size = eMesh.get_parallel_size()
gmesh_spec = "1x1x" + str(p_size) + "|bbox:0,0,0,1,1," + str(p_size)
eMesh.new_mesh(GMeshSpec(gmesh_spec))
proc_rank_field = eMesh.add_field("proc_rank", eMesh.element_rank(), scalarDimension)
breaker = Refiner(eMesh, HEX8_HEX27_1, proc_rank_field)
eMesh.commit()
eMesh.print_info()
eMesh.save_as("hex27_hex27_cube1x1x" + str(p_size) + "-orig.e")
breaker.setRemoveOldElements(True)
breaker.doBreak()
eMesh.save_as("hex27_hex27_cube1x1x" + str(p_size) + "_0.e")
em1 = PerceptMesh(3)
p_size = em1.get_parallel_size()
em1.open("hex27_hex27_cube1x1x" + str(p_size) + "_0.e")
proc_rank_field = em1.add_field("proc_rank", eMesh.element_rank(), scalarDimension)
breaker = Refiner(em1, HEX27_HEX27_8, proc_rank_field)
em1.commit()
breaker.setIgnoreSideSets(True)
breaker.setRemoveOldElements(True)
breaker.doBreak()
em1.save_as("hex27_hex27_cube1x1x" + str(p_size) + "_1.e")
示例3: test_use_case_1
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_use_case_1(self):
pMesh = PerceptMesh()
pMesh.new_mesh(GMeshSpec("3x3x3|bbox:0,0,0,2,2,2"))
field = pMesh.add_field("coordinates", 1)
pMesh.commit()
input_array = array([1.0, 0.5, 0.5])
input_array_2 = array([1.0, 1.5, 1.5])
ff = FieldFunction("ff", field, pMesh, 3, 3)
ff.add_alias("myalias")
ff_output = ff.evaluate(input_array)
f2 = FieldFunction("f2", field, pMesh, 3, 3)
f2_output = f2.evaluate(input_array_2)
sf = StringFunction("x+y+z", "myname", 3, 1)
sf_output = sf.evaluate(input_array)
sf_diff = StringFunction("ff-f2", "myname")
norm = L1Norm(pMesh.get_bulk_data())
value = norm.evaluate(ff)
diffnorm = norm.evaluate(sf_diff)
示例4: fixture_setup_0
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def fixture_setup_0(self):
eMesh = PerceptMesh()
p_size = eMesh.get_parallel_size()
gmesh_spec = "4x4x" + str((4*p_size)) + "|bbox:0,0,0,1,1,1"
eMesh.new_mesh(GMeshSpec(gmesh_spec))
eMesh.commit()
eMesh.save_as("./exodus_files/hex_fixture.e")
示例5: test_fieldFunction_readMesh_createField_interpolateFrom
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_fieldFunction_readMesh_createField_interpolateFrom(self):
num_x = 3
num_y = 3
num_z = 3
config_mesh = str(num_x) + "x" + str(num_y) + "x" + str(num_z) + "|bbox:0,0,0,1,1,1"
eMesh = PerceptMesh()
eMesh.new_mesh(GMeshSpec(config_mesh))
vectorDimension = 0
eMesh.add_field("coords_mag_field", FEMMetaData.NODE_RANK, vectorDimension)
eMesh.commit()
#p_rank = eMesh.get_bulk_data().parallel_rank()
#setRank(p_rank)
#from Util
f_coords = eMesh.get_field("coordinates")
coords_mag_field = eMesh.get_field("coords_mag_field")
#VERIFY_OP_ON Here the unit test does something
ff_coords = FieldFunction("ff_coords", f_coords, eMesh, 3, 3, FieldFunction.SIMPLE_SEARCH)
#here we could evaluate the function
#eval_vec3_print(0.1,0.2,0.3,0.0,ff_coords)
coords_mag_sf = StringFunction("sqrt(x*x + y*y + z*z)", "coords_mag_sf", 3, 1)
coords_mag_field_function = FieldFunction("coords_mag_field_function", coords_mag_field, eMesh, 3, 3, FieldFunction.SIMPLE_SEARCH)
coords_mag_field_function.interpolateFrom(coords_mag_sf)
#The following is not doable from Python
checkCoordMag = CheckCoordMag()
#eMesh.nodalOpLoop(checkCoordMag, coords_mag_field)
print checkCoordMag.error
ff_coords.add_alias("mc")
sfcm = StringFunction("sqrt(mc[0]*mc[0]+mc[1]*mc[1]+mc[2]*mc[2])", "sfcm", Dimensions(3), Dimensions(1))
tol1 = 1.e-12
vv = eval_vec3(0.1, 0.2, 0.3, 0.0, ff_coords)
print
print "0.1 == vv[0] = ", vv[0], "passed"
print "0.2 == vv[1] = ", vv[1], "passed"
print "0.3 == vv[2] = ", vv[2], "passed"
self.assertAlmostEqual(.1, vv[0], delta=tol1)
self.assertAlmostEqual(.2, vv[1], delta=tol1)
self.assertAlmostEqual(.3, vv[2], delta=tol1)
vv = eval_func(0.1, 0.2, 0.3, 0.0, sfcm)
v_expect = sqrt(0.1*0.1+0.2*0.2+0.3*0.3)
if ((vv-v_expect) < tol1):
print "vv = ", vv, " == v_expect = ", v_expect, "passed"
coords_mag_field_function.interpolateFrom(sfcm)
示例6: test_hex8_hex8_8_1
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_hex8_hex8_8_1(self):
fixture_setup()
eMesh = PerceptMesh()
p_size = eMesh.get_parallel_size()
gmesh_spec = "4x4x"+str(4*p_size)+"|bbox:0,0,0,1,1,1"
eMesh.new_mesh(GMeshSpec(gmesh_spec))
scalarDimension = 0
proc_rank_field = eMesh.add_field("proc_rank", eMesh.element_rank(), scalarDimension)
breaker = Refiner(eMesh, HEX8_HEX8_8, proc_rank_field)
eMesh.commit()
breaker.doBreak
示例7: test_hex8_tet4_6_12_1
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_hex8_tet4_6_12_1(self):
fixture_setup()
eMesh = PerceptMesh(3)
p_size = eMesh.get_parallel_size()
gmesh_spec = "1x1x" + str(p_size) + "|bbox:0,0,0,1,1," + str(p_size)
eMesh.new_mesh(GMeshSpec(gmesh_spec))
scalarDimension = 0
proc_rank_field = eMesh.add_field("proc_rank", eMesh.element_rank(), scalarDimension)
breaker = Refiner(eMesh, HEX8_TET4_6_12, proc_rank_field)
eMesh.commit()
eMesh.print_info()
breaker.setRemoveOldElements(True)
breaker.doBreak()
eMesh.save_as("hex_tet_6_12_cube1x1x1.e")
示例8: test_fieldFunction_point_eval_timing
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_fieldFunction_point_eval_timing(self):
num_x = 3
num_y = 3
num_z = 3
config_mesh = str(num_x) + "x" + str(num_y) + "x" + str(num_z) + "|bbox:0,0,0,1,1,1"
eMesh = PerceptMesh()
eMesh.new_mesh(GMeshSpec(config_mesh))
eMesh.commit()
#FIXME
#p_size = eMesh.get_bulk_data->parallel_size()
f_coords = eMesh.get_field("coordinates")
for iSearchType in range(2):
if iSearchType == 0:
search_type = FieldFunction.SIMPLE_SEARCH
search_type_name = "SIMPLE_SEARCH"
else:
search_type = FieldFunction.STK_SEARCH
search_type_name = "STK_SEARCH"
ff_coords = FieldFunction("ff_coords", f_coords, eMesh, Dimensions(3), Dimensions(3), search_type)
t1st = time.time()
val1 = eval_vec3(0.2,0.3,0.4,0.0,ff_coords)
val1 = eval_vec3(0.2,0.3,0.4,0.0,ff_coords) #evaluated twice???
t1st = time.time() - t1st
numIter = 10000
random.seed(12345)
total_time = time.time()
max_rand = 32767
for iter in range(numIter):
num0 = random.randint(1, max_rand)*1.0
num1 = random.randint(1, max_rand)*1.0
num2 = random.randint(1, max_rand)*1.0
pts = array([(num0/max_rand), (num1/max_rand), (num2/max_rand)])
output_pts = array([0.0,0.0,0.0])
output_pts = ff_coords.value(pts, output_pts, 0.0)
total_time = time.time() - total_time
print "TEST::function::fieldFunction_point_eval_timing: "
print " for search_type= ", search_type_name
print " time for 1st eval= ", t1st
print " for ", numIter, "iterations, evaluating field(x,y,z) time = ", total_time
print " average per point lookup and eval time = ", (total_time/numIter)
示例9: test_fieldFunction_demo_1_0_0
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_fieldFunction_demo_1_0_0(self):
eMesh = PerceptMesh(3)
eMesh.new_mesh(GMeshSpec("3x3x3|bbox:0,0,0,1,1,1"))
eMesh.commit()
eMesh.print_info("fieldFunction_demo_1_0_0", 2)
f_coords = eMesh.get_field("coordinates")
ff_coords = FieldFunction("ff_coords", f_coords, eMesh, 3, 3)
x = 0.123
y = 0.234
z = 0.345
time = 0.0
eval_vec3_print(x, y, z, time, ff_coords)
示例10: fixture_setup_0
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def fixture_setup_0():
eMesh = PerceptMesh()
p_size = eMesh.get_parallel_size()
gmesh_spec = "4x4x"+str(4*p_size)+"|bbox:0,0,0,1,1,1"
eMesh.new_mesh(GMeshSpec(gmesh_spec))
eMesh.commit()
eMesh.save_as("hex_fixture.e")
eMesh = PerceptMesh()
eMesh.open("exodus_files/"+input_files_loc+"hex_fixture.e")
scalarDimension = 0
proc_rank_field = eMesh.add_field("proc_rank", eMesh.element_rank(), scalarDimension)
breaker = Refiner(eMesh, HEX8_TET4_24, proc_rank_field)
eMesh.commit()
breaker.doBreak()
eMesh.save_as("tet_fixture.e")
示例11: test_fieldFunction_demo_1
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_fieldFunction_demo_1(self):
gms = Gmesh_STKmesh_Fixture(MPI.COMM_WORLD, "3x3x3|bbox:0,0,0,1,1,1")
print "gms = ", gms
print "gms= end"
eMesh = PerceptMesh()
eMesh.new_mesh(GMeshSpec("3x3x3|bbox:0,0,0,1,1,1"))
eMesh.commit()
f_coords = eMesh.get_field("coordinates")
ff_coords = FieldFunction("ff_coords", f_coords, eMesh, 3, 3)
x = 0.123
y = 0.234
z = 0.345
time = 0.0
eval_vec3_print(x,y,z,time,ff_coords)
示例12: __init__
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
class LocalFixture:
def __init__(self, num_xyz, num_y, num_z):
self.eMesh = PerceptMesh()
self.num_x = num_xyz
self.num_y = num_y
self.num_z = num_z
config_mesh = str(self.num_x) + "x" + str(self.num_y) + "x" + str(self.num_z) + "|bbox:-0.5,-0.5,-0.5,0.5,0.5,0.5"
self.eMesh.new_mesh(GMeshSpec(config_mesh))
self.eMesh.commit()
self.metaData = self.eMesh.get_fem_meta_data()
self.bulkData = self.eMesh.get_bulk_data()
self.coords_field = self.metaData.get_field("coordinates")
self.sfx = StringFunction("x", "sfx", Dimensions(3), Dimensions(1))
self.sfx_res = ConstantFunction(0.0, "sfx_res")
示例13: test_fieldFunction_point_eval_verify
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_fieldFunction_point_eval_verify(self):
num_x = 3
num_y = 3
num_z = 3
config_mesh = str(num_x) + "x" + str(num_y) + "x" + str(num_z) + "|bbox:0,0,0,1,1,1"
eMesh = PerceptMesh()
eMesh.new_mesh(GMeshSpec(config_mesh))
eMesh.commit()
f_coords = eMesh.get_field("coordinates")
ff_coords = FieldFunction("ff_coords", f_coords, eMesh, Dimensions(3), Dimensions(3), FieldFunction.SIMPLE_SEARCH)
val1 = eval_vec3_print(0.2,0.3,0.4,0.0,ff_coords)
bulkData = eMesh.get_bulk_data()
try:
val10 = eval_print_vec3(1.2, 1.3, 1.4, 0.0, ff_coords)
except:
print "expected to catch this exception: "
pts = array([0.2, 0.3, 0.4])
output_pts = array([0.0, 0.0, 0.0])
output_pts = ff_coords.value(pts, output_pts)
tol = 1.e-9
print "output(0) = ", pts[0], " == output_pts(0) = ", output_pts[0]
print "output(1) = ", pts[1], " == output_pts(1) = ", output_pts[1]
print "output(2) = ", pts[2], " == output_pts(2) = ", output_pts[2]
self.assertAlmostEqual(pts[0], output_pts[0], delta = tol)
self.assertAlmostEqual(pts[1], output_pts[1], delta = tol)
self.assertAlmostEqual(pts[2], output_pts[2], delta = tol)
示例14: test_fieldFunction_demo_2
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_fieldFunction_demo_2(self):
eMesh = PerceptMesh()
eMesh.new_mesh(GMeshSpec("3x3x3|bbox:0,0,0,1,1,1")) # use a fixture to generate a 3x3x3 hex mesh
vectorDimension = 0
# add a field
eMesh.add_field("coords_mag_field", FEMMetaData.NODE_RANK, vectorDimension)
eMesh.commit()
f_coords = eMesh.get_field("coordinates") # get pre-existing field
coords_mag_field = eMesh.get_field("coords_mag_field") # get the field we just created
ff_coords = FieldFunction("ff_coords", f_coords, eMesh, 3, 3) # define a field function
eval_vec3_print(0.1,0.1,0.1,0.0,ff_coords) # evaluate and print the field function a point {0.1, 0.1, 0.1} time=0.0
coords_mag_sf = StringFunction("sqrt(x*x + y*y + z*z)" , "coords_mag_sf", 3, 1) # define coordinate magnitude function
x = 0.123
y = 0.234
z = 0.345
vv = sqrt(x*x + y*y + z*z)
v1 = eval_func(x,y,z,0,coords_mag_sf)
print "vv = ", vv, "== v1 = ", v1
self.assertEqual(vv, v1) # ensure correctness of string function
# define a field function
coords_mag_field_function = FieldFunction("coords_mag_field_function", coords_mag_field, eMesh, 3, 1)
# interpolate the function onto the mesh
coords_mag_field_function.interpolateFrom(coords_mag_sf)
eMesh.save_as("./cubehex8_withCoordMag_out.e")
# demonstrate how to usa an alias
ff_coords.add_alias("mc")
sfcm = StringFunction("sqrt(mc[0]*mc[0]+mc[1]*mc[1]+mc[2]*mc[2])", "sfcm", 3, 1)
示例15: test_fieldFunction_multiplePoints
# 需要导入模块: import PerceptMesh [as 别名]
# 或者: from PerceptMesh import new_mesh [as 别名]
def test_fieldFunction_multiplePoints(self):
print "start..."
num_x = 3
num_y = 3
num_z = 3
config_mesh = str(num_x) + "x" + str(num_y) + "x" + str(num_z) + "|bbox:0,0,0,1,1,1"
eMesh = PerceptMesh()
eMesh.new_mesh(GMeshSpec(config_mesh))
vectorDimension = 0
eMesh.add_field("coords_mag_field", FEMMetaData.NODE_RANK, vectorDimension)
eMesh.commit()
f_coords = eMesh.get_field("coordinates")
ff_coords = FieldFunction("ff_coords", f_coords, eMesh, Dimensions(3), Dimensions(3), FieldFunction.SIMPLE_SEARCH)
val1 = eval_vec3(0.2, 0.3, 0.4, 0.0, ff_coords)
print "val1= ", val1
points = zeros(shape=(4,3))
output_expect = zeros(shape=(4,3))
output = zeros(shape=(4,3))
print "here 1"
i = 0
for xyzt in self.testpoints:
x = xyzt[0]
y = xyzt[1]
z = xyzt[2]
t = xyzt[3]
points[i][0] = x
points[i][1] = y
points[i][2] = z
vec = eval_vec3(x,y,z,t,ff_coords)
tol0 = fabs(1.e-5*x)
tol1 = fabs(1.e-5*y)
tol2 = fabs(1.e-5*z)
print "vec(0) = ", vec[0], " == x = ", x
print "vec(1) = ", vec[1], " == y = ", y
print "vec(2) = ", vec[2], " == z = ", z
self.assertAlmostEqual(x, vec[0], delta=tol0)
self.assertAlmostEqual(y, vec[1], delta=tol1)
self.assertAlmostEqual(z, vec[2], delta=tol2)
output_expect[i][0] = x
output_expect[i][1] = y
output_expect[i][2] = z
i = i + 1
print "field_op: NPTS= 4"
ff_coords.setDomainDimensions(Dimensions(3))
ff_coords.setCodomainDimensions(Dimensions(3))
#output = ff_coords.evaluate(points)
# pass in the output array to ensure result is properly dimensioned
output = ff_coords.value(points, output)
print "here 2, output= ", output
for j in range(4): #NLM
output_expect_j = output_expect[j][0]
output_j = output[j][0]
tol = 1.e-5*(fabs(output_expect_j))
print "output[j] = ", output_j, " == output_expect[j] = ", output_expect_j , " points[j] = ", points[j]
self.assertAlmostEqual(output_j, output_expect_j, delta = tol)
print "start...done"