当前位置: 首页>>代码示例>>Python>>正文


Python PauliClass.paulis_by_weight方法代码示例

本文整理汇总了Python中PauliClass.paulis_by_weight方法的典型用法代码示例。如果您正苦于以下问题:Python PauliClass.paulis_by_weight方法的具体用法?Python PauliClass.paulis_by_weight怎么用?Python PauliClass.paulis_by_weight使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在PauliClass的用法示例。


在下文中一共展示了PauliClass.paulis_by_weight方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: syndrome_to_recovery_operator

# 需要导入模块: import PauliClass [as 别名]
# 或者: from PauliClass import paulis_by_weight [as 别名]
    def syndrome_to_recovery_operator(self,synd): 
        r"""
        Returns a Pauli operator which corrects an error on the stabilizer code
        ``self``, given the syndrome ``synd``, a bitstring indicating which 
        generators the implied error commutes with and anti-commutes with. 

        :param synd: a string, list, tuple or other sequence type with entries
            consisting only of 0 or 1. This parameter will be certified before
            use.
        """
        
        # If the syndrome is an integer, change it to a bitstring by
        # using string formatting.
        if isinstance(synd,int):
            fmt = "{{0:0>{n}b}}".format(n=self.n_constraints)   
            synd = fmt.format(synd)
            
        # Ensures synd is a list of integers by mapping int onto the list.
        synd=map(int, synd)
        
        # Check that the syndrome is all zeros and ones.
        acceptable_syndrome = all([bit == 0 or bit == 1 for bit in synd])
        if not acceptable_syndrome:
            raise ValueError("Please input a syndrome which is an iterable onto 0 and 1.")
        if len(synd) != self.nq - self.nq_logical:
            raise ValueError("Syndrome must account for n-k bits of syndrome data.")
        
        # We produce commutation and anti_commutation constraints from synd.
        anti_coms = list(it.compress(self.group_generators,synd))
        coms = list(it.compress(self.group_generators,[1-bit for bit in synd]))
        for op_weight in range(self.nq+1):
            #We loop over all possible weights. As soon as we find an operator
            #that satisfies the commutation and anti-commutation constraints,
            #we return it:
            low_weight_ops=map(p.remove_phase,
                               cs.solve_commutation_constraints(coms,anti_coms,
                               search_in_set=p.paulis_by_weight(self.nq,
                               op_weight)))
            if low_weight_ops:
                break 
        return low_weight_ops[0]
开发者ID:Roger-luo,项目名称:python-quaec,代码行数:43,代码来源:stab.py

示例2: star_decoder

# 需要导入模块: import PauliClass [as 别名]
# 或者: from PauliClass import paulis_by_weight [as 别名]
 def star_decoder(self, for_enc=None, as_dict=False):
     r"""
     Returns a tuple of a decoding Clifford and a :class:`qecc.PauliList`
     specifying the recovery operation to perform as a function of the result
     of a :math:`Z^{\otimes{n - k}}` measurement on the ancilla register.
     
     For syndromes corresponding to errors of weight greater than the distance,
     the relevant element of the recovery list will be set to
     :obj:`qecc.Unspecified`.
     
     :param for_enc: If not ``None``, specifies to use a given Clifford
         operator as the encoder, instead of the first element yielded by
         :meth:`encoding_cliffords`.
     :param bool as_dict: If ``True``, returns a dictionary from recovery
         operators to syndromes that indicate that recovery.
     """
     def error_to_pauli(error):
         if error == p.I.as_clifford():
             return "I"
         if error == p.X.as_clifford():
             return "X"
         if error == p.Y.as_clifford():
             return "Y"
         if error == p.Z.as_clifford():
             return "Z"
     
     if for_enc is None:
         encoder = self.encoding_cliffords().next()
     else:
         encoder = for_enc
     decoder = encoder.inv()
     
     errors = pc.PauliList(p.eye_p(self.nq)) + pc.PauliList(p.paulis_by_weight(self.nq, self.n_correctable))
     
     syndrome_dict = defaultdict(lambda: Unspecified)
     syndrome_meas = [p.elem_gen(self.nq, idx, 'Z') for idx in range(self.nq_logical, self.nq)]
             
     for error in errors:
         effective_gate = decoder * error.as_clifford() * encoder
         # FIXME: the following line emulates measurement until we have a real
         #        measurement simulation method.
         syndrome = tuple([effective_gate(meas).ph / 2 for meas in syndrome_meas])
         
         recovery = "".join([
             # FIXME: the following is a broken hack to get the phases on the logical qubit register.
             error_to_pauli(c.Clifford([effective_gate.xout[idx][idx]], [effective_gate.zout[idx][idx]]))
             for idx in range(self.nq_logical)
         ])
         
         # For degenerate codes, the syndromes can collide, so long as we
         # correct the same way for each.
         if syndrome in syndrome_dict and syndrome_dict[syndrome] != recovery:
             raise RuntimeError('Syndrome {} has collided.'.format(syndrome))
             
         syndrome_dict[syndrome] = recovery
     
     if as_dict:
         outdict = dict()
         keyfn = lambda (syndrome, recovery): recovery
         data = sorted(syndrome_dict.items(), key=keyfn)
         for recovery, syndrome_group in it.groupby(data, keyfn):
             outdict[recovery] = [syn[0] for syn in syndrome_group]
         
         return decoder, outdict
         
     else:
         recovery_list = pc.PauliList(syndrome_dict[syndrome] for syndrome in it.product(range(2), repeat=self.n_constraints))
         
         return decoder, recovery_list
开发者ID:Roger-luo,项目名称:python-quaec,代码行数:71,代码来源:stab.py


注:本文中的PauliClass.paulis_by_weight方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。