当前位置: 首页>>代码示例>>Python>>正文


Python MOSES.getWritersList方法代码示例

本文整理汇总了Python中MOSES.getWritersList方法的典型用法代码示例。如果您正苦于以下问题:Python MOSES.getWritersList方法的具体用法?Python MOSES.getWritersList怎么用?Python MOSES.getWritersList使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MOSES的用法示例。


在下文中一共展示了MOSES.getWritersList方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: populateWriters

# 需要导入模块: import MOSES [as 别名]
# 或者: from MOSES import getWritersList [as 别名]
    def populateWriters(self):
        self.writers_filter_box.clear()
        start_date = self.start_date_edit.date().toPyDate()
        end_date = self.end_date_edit.date().toPyDate()
        self.writers_list = MOSES.getWritersList(self.user_id, self.password, start_date)

        writers = list(set(self.writers_list["Name"]))
        writers.sort()
        self.writers_filter_box.addItems(writers)
开发者ID:vinay87,项目名称:oink,代码行数:11,代码来源:PiggyBankWithFilter.py

示例2: summarize

# 需要导入模块: import MOSES [as 别名]
# 或者: from MOSES import getWritersList [as 别名]
    def summarize(self):
        """
        1. Get the list of all writers working on the start_date.
        
        2. For each writer, 
            2.1 If the dates are different, get the average efficiency between the two dates.
            2.2 get the efficiency on the end_date.
            2.4 get the efficiency on the week of the end_date.
            2.5 get the effiency on the month of the end_date.
            2.6 get the efficiency on the quarter.
            2.7 get the effiency on the half-year.
        3. Build all this information into a dictionary.
        4. Compile all dictionaries into a list.
        5. Emit the list.
        """

        self.writers = MOSES.getWritersList(self.user_id, self.password, self.start_date)
        self.summary_data = []
        done = 0
        total = len(self.writers)
        self.break_loop = False
        finished_all_writers = False
        start_time = datetime.datetime.now()
        for writer in self.writers:
            self.writer_id = writer["Employee ID"]
            self.writer_name = writer["Name"]
            self.writer_email = writer["Email ID"]
            try:
                writer_summary = self.fetchWriterSummary()
            except Exception, err:
                print "********\nEncountered an error while trying to fetch data for the summary sheet in PorkKent.\nPrinting the error:\n%s\n********" % repr(err)
                pass
                time.sleep(5)
                try:
                    writer_summary = self.fetchWriterSummary(1)
                except Exception, err:
                    print "********\nEncountered an error while trying to fetch data for the summary sheet in PorkKent.\nPrinting the error:\n%s\n********" % repr(err)
                    pass
                    time.sleep(5)
                    try:
                        writer_summary = self.fetchWriterSummary(2)
                    except Exception, err:
                        print "********\nEncountered an error while trying to fetch data for the summary sheet in PorkKent.\nPrinting the error:\n%s\n********" % repr(err)
                        pass
                        time.sleep(5)
                        try:
                            writer_summary = self.fetchWriterSummary(3)
                        except Exception, err:
                            print "********\nEncountered an error while trying to fetch data for the summary sheet in PorkKent.\nPrinting the error:\n%s\n********" % repr(err)
                            raise
开发者ID:vinay87,项目名称:oink,代码行数:52,代码来源:PorkKent.py

示例3: getEfficiencyData

# 需要导入模块: import MOSES [as 别名]
# 或者: from MOSES import getWritersList [as 别名]
def getEfficiencyData(query_date=None):
    #Set the date.
    if query_date is None:
        query_date = datetime.date.today()
    
    user_id, password = MOSES.getbbc()

    #Get a list of dictionaries pertaining to writers' data.
    writers_data_list = MOSES.getWritersList(user_id, password, query_date)

    #get a sorted list of writers' employee IDs.
    writers_ids = [writer["Employee ID"] for writer in writers_data_list]
    writers_ids.sort()

    writer_count = len(writers_ids)

    #For each writer, get the efficiency, work status, cfm and gseo.
    writer_data_frame = pd.DataFrame(columns=["Employee ID","Employee Name","Status","Efficiency","CFM","GSEO","Efficiency Color","CFM Color", "GSEO Color"]                                    )

    #create a pandas dataframe with the following columns:
    #writerid, writer_name, work_status, efficiency, cfm, gseo, stack_rank_index

    red = "#FF3325"
    green = "#43AD38"
    blue = "#027CD5"
    bright_blue = "#027CD5"
    grey = "0.75"
    writer_counter = 0
    for writer in writers_data_list:
        writer_id = writer["Employee ID"]
        writer_name = "%s" %writer["Name"][:writer["Name"].find(" ")]
        status, relaxation, approval = MOSES.checkWorkStatus(user_id, password, query_date, writer_id)
        if status == "Working":
            efficiency = MOSES.getEfficiencyFor(user_id, password, query_date, writer_id)
        else:
            efficiency = 100.00
        cfm = MOSES.getCFMFor(user_id, password, query_date, writer_id)
        gseo = MOSES.getGSEOFor(user_id, password, query_date, writer_id)
        if status == "Working":
            efficiency *= 100.000
            efficiency = np.around(efficiency,3)
            if efficiency < 100.000:
                efficiency_color = red
            elif 100.000 <= efficiency < 105.000:
                efficiency_color = green
            elif 105.000 <= efficiency < 110.000:
                efficiency_color = blue
            else:
                efficiency_color = bright_blue
        else:
            efficiency_color = grey
        #print efficiency, efficiency_color
        if cfm < 95.000:
            cfm_color = red
        elif 95.000 <= cfm < 97.000:
            cfm_color = green
        elif 97.000 <= cfm < 99.000:
            cfm_color = blue
        else:
            cfm_color = bright_blue
        if gseo < 95.000:
            gseo_color = red
        elif 95.000 <= gseo < 97.000:
            gseo_color = green
        elif 97.000 <= gseo < 99.000:
            gseo_color = blue
        else:
            gseo_color = bright_blue
        writer_array = [writer_id, writer_name, status, efficiency, 
                    cfm, gseo, efficiency_color, cfm_color, gseo_color]
        #print writer_array
        writer_data_frame.loc[writer_counter] = writer_array
        writer_counter+=1
    writer_data_frame.sort(["Efficiency","CFM","GSEO"], ascending = [0,0,0], inplace = True)
    return writer_data_frame
开发者ID:vinay87,项目名称:oink,代码行数:77,代码来源:Graphinator.py

示例4: getWritersList

# 需要导入模块: import MOSES [as 别名]
# 或者: from MOSES import getWritersList [as 别名]
 def getWritersList(self):
     self.writers_data_frame = MOSES.getWritersList(self.user_id, self.password, self.start_date_edit.date().toPyDate())
     writer_names_list = list(set(self.writers_data_frame["Name"]))
     writer_names_list.sort()
     return writer_names_list
开发者ID:vinay87,项目名称:oink,代码行数:7,代码来源:DailyPorker.py


注:本文中的MOSES.getWritersList方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。