本文整理汇总了Python中Euler.isPrime方法的典型用法代码示例。如果您正苦于以下问题:Python Euler.isPrime方法的具体用法?Python Euler.isPrime怎么用?Python Euler.isPrime使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Euler
的用法示例。
在下文中一共展示了Euler.isPrime方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: permutePrimes
# 需要导入模块: import Euler [as 别名]
# 或者: from Euler import isPrime [as 别名]
def permutePrimes(prime, character):
# Replaces each instance of character in prime with 0-9 and
# returns a list of each resulting number that is also prime
digits = [x for x in range(10)]
digits = list(filter(lambda x: x != character, digits))
answers = [prime]
for x in digits:
testnum = replaceDigit(prime, character, x)
if Euler.isPrime(testnum) == True:
if len(str(testnum)) == len(str(prime)):
answers.append(testnum)
return answers
示例2: main
# 需要导入模块: import Euler [as 别名]
# 或者: from Euler import isPrime [as 别名]
def main(limit):
# Iterates through each number less than limit testing for primeness.
# Counter is multiplied by each prime number for the a number of times
# equal to the greatest number of times that prime divides a number less
# than or equal to the limit. For example, 2 divides 8 3 times (8 = 2*2*2),
# so when limit == 10 counter is multiplied by 2^3.
counter = 1
for x in range(2, limit+1):
if Euler.isPrime(x):
counter *= (x ** math.floor(math.log(limit, x)))
return counter
示例3: naiveResilience
# 需要导入模块: import Euler [as 别名]
# 或者: from Euler import isPrime [as 别名]
def naiveResilience(num):
if(num==1): return 0/num
if(Euler.isPrime(num,Euler.currPrimes)): return (num-1)/num
count = 1
for i in range(2,num):
hit = False
b = math.sqrt(num)
for p in Euler.currPrimes:
if(p>b): break
if(i%p==0 and num%p==0):
hit = True
break
if(not hit): count+=1
return count/num
示例4: range
# 需要导入模块: import Euler [as 别名]
# 或者: from Euler import isPrime [as 别名]
# Problem 58: Spiral primes
import time
import Euler
t1 = time.clock()
diagonal = 1
primes = []
non_primes = [1]
side_length = 3
ratio = 1
while ratio > 1/10: # Change to: while found = False
for x in range(4):
diagonal += side_length - 1
if Euler.isPrime(diagonal) == True:
primes.append(diagonal)
else:
non_primes.append(diagonal)
ratio = len(primes) / (len(primes) + len(non_primes))
side_length += 2
t2 = time.clock()
print("Side length = ", side_length - 2)
print(str(t2-t1)[:9])
示例5: is_pair
# 需要导入模块: import Euler [as 别名]
# 或者: from Euler import isPrime [as 别名]
def is_pair(x,y):
# Returns True if xy and yx are each prime, else returns False
test1 = int(str(x) + str(y))
test2 = int(str(y) + str(x))
return Euler.isPrime(test1) == True and Euler.isPrime(test2) == True
示例6: enumerate
# 需要导入模块: import Euler [as 别名]
# 或者: from Euler import isPrime [as 别名]
# Problem 50: Consecutive Prime Sum
import time
t1 = time.clock()
import Euler
limit = 4000
primes = [x for x in Euler.primeSieve(limit)]
answer = [(0,[])]
for x, prime1 in enumerate(primes):
startprime = x
sequence = []
counter = 0
for y, prime2 in enumerate(primes):
if y >= x:
counter += prime2
if Euler.isPrime(counter) == True:
if counter < 1000000:
sequentials = [x for x in primes[x:y+1]]
if len(answer[0][1]) < len(sequentials):
answer[0] = ((counter, sequentials))
print("Prime = " + str(answer[0][0]) + " ; Length of sequence: " + str(len(answer[0][1])))
print("Sequence start = " + str(answer[0][1][0]) + " ; Sequence end = " + str(answer[0][1][-1]))
t2 = time.clock()
print("Runtime = " + str(t2-t1)[:4] + " seconds")