本文整理汇总了Python中Column类的典型用法代码示例。如果您正苦于以下问题:Python Column类的具体用法?Python Column怎么用?Python Column使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Column类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_edge_embeddedness
def get_edge_embeddedness(graph, pairs):
c = Column(1, 'numerical')
value = dict()
for pair in pairs:
value[pair] = len(list(nx.common_neighbors(graph, pair[0], pair[1])))
c.value = value
return c
示例2: read_feature_column_major
def read_feature_column_major(filename, column_type):
with open(filename, 'r') as f:
line = f.readline().strip()
entry = line.split(',')
column_name = entry[1:]
column_num = len(column_name)
assert len(column_type) == column_num
# generate the list of Columns for later usage
columns = list()
for t in column_type:
c = Column(1, t)
c.value = dict()
columns.append(c)
# read in rows
for line in f:
entry = (line.strip()).split(',')
assert len(entry) == (column_num + 1)
row_id = int(entry[0])
for i, column in enumerate(columns):
value = entry[i+1].strip()
if len(value) == 0 or value == 'None':
continue
if column.type == 'categorical':
column.value[row_id] = value
elif column.type == 'numerical':
column.value[row_id] = float(value)
return (columns, column_name)
示例3: get_all_node_degree
def get_all_node_degree(graph):
c = Column(1, 'numerical')
value = dict()
for v in graph.nodes():
value[v] = graph.degree(v)
c.value = value
return c
示例4: get_hitting_time
def get_hitting_time(graph, pairs, trials, max_step):
c = Column(1, 'numerical')
value = dict()
pairs_set = set(pairs)
hitting_time = dict()
for n in graph.nodes():
hitting_time[n] = defaultdict(float)
# calculating hitting time
for n1 in graph.nodes():
print(n1)
# run random walks for given starting node
expected_steps = random_walk(graph, n1, trials, max_step)
for n2 in expected_steps.keys():
if (n1,n2) in pairs_set or (n2,n1) in pairs_set:
hitting_time[n1][n2] = expected_steps[n2]
for pair in pairs:
n1 = pair[0]
n2 = pair[1]
if n2 in hitting_time[n1] and n1 in hitting_time[n2]:
if hitting_time[n1][n2] == 0.0:
hitting_time[n1][n2] = NO_PATH_LENGTH
if hitting_time[n2][n1] == 0.0:
hitting_time[n2][n1] = NO_PATH_LENGTH
value[pair] = hitting_time[n1][n2] + hitting_time[n2][n1]
c.value = value
return c
示例5: get_common_categories_col
def get_common_categories_col(converted_column, pairs):
if converted_column.type != 'categorical':
return None
c = Column(1, 'numerical')
value = dict()
for pair in pairs:
n1 = pair[0]
n2 = pair[1]
if n1 in converted_column.value:
f1 = converted_column.value[n1] # a set of integers
else:
f1 = set()
if n2 in converted_column.value:
f2 = converted_column.value[n2] # a set of integers
else:
f2 = set()
union = f1 | f2
intersect = f1 & f2
if len(union) != 0 and len(intersect) != 0:
value[pair] = float(len(intersect)) / len(union)
else:
pass #value[pair] = 0.0
c.value = value
return c
示例6: get_common_categories_col
def get_common_categories_col(converted_column, pairs):
if converted_column.type != 'categorical':
return None
c = Column(1, 'numerical')
value = dict()
for pair in pairs:
n1 = pair[0]
n2 = pair[1]
if n1 in converted_column.value:
f1 = converted_column.value[n1] # a set of integers
else:
f1 = set()
if n2 in converted_column.value:
f2 = converted_column.value[n2] # a set of integers
else:
f2 = set()
# TODO Task 6: find the number of common categories, and normalize it
# Assume f1,f2 are the set of categories of node1 and node2 respectively
# we want to calculate |f1 intersect f2| / |f1 union f2|
# (if f1 union f2 is empty set, then the value is 0.0)
c.value = value
return c
示例7: get_adamic_adar_score
def get_adamic_adar_score(graph, pairs):
c = Column(1, 'numerical')
# TODO Task_4: EDIT HERE, finish the get_adamic_adar_score function
# hint: you can copy the structure from other function
# you may use 'math' module in python
c.value[pairs[0]] = 1 # delete this line
return c
示例8: get_hitting_time
def get_hitting_time(graph, edges, max_length):
c = Column(1, 'numerical')
value = dict()
for edge in edges:
value[edge] = __expected_steps(graph, edge, max_length)
c.value = value
return c
示例9: get_preferential_score
def get_preferential_score(graph, pairs):
c = Column(1, 'numerical')
value = dict()
for pair in pairs:
nei_x = graph.neighbors(pair[0])
nei_y = graph.neighbors(pair[1])
value[pair] = (len(nei_x) + 1) * (len(nei_y) + 1)
c.value = value
return c
示例10: get_shortest_path_length
def get_shortest_path_length(graph, pairs):
c = Column(1, 'numerical')
value = dict()
for pair in pairs:
try:
value[pair] = nx.shortest_path_length(graph, pair[0], pair[1])
except:
pass
c.value = value
return c
示例11: get_adamic_adar_score
def get_adamic_adar_score(graph, pairs):
c = Column(1, 'numerical')
value = dict()
for pair in pairs:
common_nei = nx.common_neighbors(graph, pair[0], pair[1])
score = 0.0
for n in common_nei:
score += 1.0 / math.log(len(graph.neighbors(n)) + 1)
value[pair] = score
c.value = value
return c
示例12: get_jaccards_coefficient
def get_jaccards_coefficient(graph, pairs):
c = Column(1, 'numerical')
value = dict()
for pair in pairs:
nei_x = set(graph.neighbors(pair[0]))
nei_y = set(graph.neighbors(pair[1]))
# TODO Task_3: EDIT HERE, caculate jaccards_coefficient
# for pair[0] and pair[1]
# value[pair] = ooxx
c.value = value
return c
示例13: get_shortest_path_length
def get_shortest_path_length(graph, pairs):
c = Column(1, 'numerical')
value = dict()
for pair in pairs:
try:
# TODO Task_1: EDIT HERE, please find shortest
# path from pair[0] to pair[1]
# value[pair] = ooxx
except:
pass
c.value = value
return c
示例14: get_cc_score
def get_cc_score(graph, pairs):
c = Column(1, 'numerical')
value = dict()
# TODO Task_5: Calculate clustering coefficient score for all pairs
# cc = nx.ooooxxxx(graph)
# for pair in pairs:
# n1 = pair[0]
# n2 = pair[1]
# value[pair] = xxxxxx
value[pairs[0]] = 1 # delete this line
c.value = value
return c
示例15: get_cc_score
def get_cc_score(graph, pairs):
c = Column(1, 'numerical')
value = dict()
# calculate clustering coefficient scores for all nodes
cc = nx.clustering(graph)
for pair in pairs:
x = pair[0]
y = pair[1]
value[pair] = cc[x] + cc[y]
c.value = value
return c