本文整理汇总了Python中C2_8_mystyle类的典型用法代码示例。如果您正苦于以下问题:Python C2_8_mystyle类的具体用法?Python C2_8_mystyle怎么用?Python C2_8_mystyle使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了C2_8_mystyle类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: scatterplot
def scatterplot():
'''Fancy scatterplots, using the package "seaborn" '''
import seaborn as sns
df = sns.load_dataset("iris")
sns.pairplot(df, hue="species", size=2.5)
C2_8_mystyle.printout_plain('multiScatterplot.png')
示例2: showResults
def showResults(challenger_data, model):
''' Show the original data, and the resulting logit-fit'''
# First plot the original data
plt.figure()
sns.set_context('poster')
sns.set_style('whitegrid')
np.set_printoptions(precision=3, suppress=True)
plt.scatter(challenger_data[:, 0], challenger_data[:, 1], s=75, color="k",
alpha=0.5)
plt.yticks([0, 1])
plt.ylabel("Damage Incident?")
plt.xlabel("Outside temperature (Fahrenheit)")
plt.title("Defects of the Space Shuttle O-Rings vs temperature")
plt.xlim(50, 85)
# Plot the fit
x = np.arange(50, 85)
alpha = model.params[0]
beta = model.params[1]
y = logistic(x, beta, alpha)
plt.hold(True)
plt.plot(x,y,'r')
outFile = 'ChallengerPlain.png'
C2_8_mystyle.printout_plain(outFile, outDir='..\Images')
plt.show()
示例3: generatedata
def generatedata():
''' Generate and show the data '''
x = np.linspace(-5,5,101)
(X,Y) = np.meshgrid(x,x)
# To get reproducable values, I provide a seed value
np.random.seed(987654321)
Z = -5 + 3*X-0.5*Y+np.random.randn(np.shape(X)[0], np.shape(X)[1])
# Plot the figure
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X,Y,Z, cmap=cm.afmhot, rstride=2, cstride=2,
linewidth=0, antialiased=False)
ax.view_init(20,-120)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
fig.colorbar(surf, shrink=0.6)
outFile = '3dSurface.png'
C2_8_mystyle.printout_plain(outFile)
return (X.flatten(),Y.flatten(),Z.flatten())
示例4: generateData
def generateData():
''' Generate and show the data: a plane in 3D '''
x = np.linspace(-5,5,101)
(X,Y) = np.meshgrid(x,x)
# To get reproducable values, I provide a seed value
np.random.seed(987654321)
Z = -5 + 3*X-0.5*Y+np.random.randn(np.shape(X)[0], np.shape(X)[1])
# Set the color
myCmap = cm.GnBu_r
# If you want a colormap from seaborn use:
#from matplotlib.colors import ListedColormap
#myCmap = ListedColormap(sns.color_palette("Blues", 20))
# Plot the figure
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X,Y,Z, cmap=myCmap, rstride=2, cstride=2,
linewidth=0, antialiased=False)
ax.view_init(20,-120)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
fig.colorbar(surf, shrink=0.6)
outFile = '3dSurface.png'
C2_8_mystyle.printout_plain(outFile)
return (X.flatten(),Y.flatten(),Z.flatten())
示例5: show_poisson_views
def show_poisson_views():
"""Show different views of a Poisson distribution"""
fig, ax = plt.subplots(3,1)
k = np.arange(25)
pd = stats.poisson(10)
C2_8_mystyle.set(12)
ax[0].plot(k, pd.pmf(k),'x-')
ax[0].set_title('Poisson distribition')
ax[0].set_xticklabels([])
ax[0].set_ylabel('PMF (X)')
ax[1].plot(k, pd.cdf(k))
ax[1].set_xlabel('X')
ax[1].set_ylabel('CDF (X)')
y = np.linspace(0,1,100)
ax[2].plot(y, pd.ppf(y))
ax[2].set_xlabel('X')
ax[2].set_ylabel('PPF (X)')
plt.tight_layout()
plt.show()
示例6: main
def main():
# Generate dummy data
x = np.array([-2.1, -1.3, -0.4, 1.9, 5.1, 6.2])
# Define the two plots
fig, axs = plt.subplots(1,2)
# Generate the left plot
plot_histogram(axs[0], x)
# Generate the right plot
explain_KDE(axs[1], x)
# Save and show
C2_8_mystyle.printout_plain('KDEexplained.png')
plt.show()
示例7: generate_probplot
def generate_probplot():
'''Generate a prob-plot for a chi2-distribution of sample data'''
# Define the skewed distribution
chi2 = stats.chi2(3)
# Generate the data
x = np.linspace(0,10, 100)
y = chi2.pdf(x)
np.random.seed(12345)
numData = 100
data = chi2.rvs(numData)
# Arrange subplots
sns.set_context('paper')
sns.set_style('white')
C2_8_mystyle.set(11)
fig, axs = plt.subplots(1,2)
# Plot distribution
axs[0].plot(x,y)
axs[0].set_xlabel('X')
axs[0].set_ylabel('PDF(X)')
axs[0].set_title('chi2(x), k=3')
sns.set_style('white')
x0, x1 = axs[0].get_xlim()
y0, y1 = axs[0].get_ylim()
axs[0].set_aspect((x1-x0)/(y1-y0))
#sns.despine()
# Plot probplot
plt.axes(axs[1])
stats.probplot(data, plot=plt)
x0, x1 = axs[1].get_xlim()
y0, y1 = axs[1].get_ylim()
axs[1].axhline(0, lw=0.5, ls='--')
axs[1].axvline(0, lw=0.5, ls='--')
axs[1].set_aspect((x1-x0)/(y1-y0))
#sns.despine()
C2_8_mystyle.printout_plain('chi2pp.png')
return(data)
'''
示例8: KS_principle
def KS_principle(inData):
'''Show the principle of the Kolmogorov-Smirnov test.'''
# CDF of normally distributed data
nd = stats.norm()
nd_x = np.linspace(-4, 4, 101)
nd_y = nd.cdf(nd_x)
# Empirical CDF of the sample data, which range for approximately 0 to 10
numPts = 50
lowerLim = 0
upperLim = 10
ecdf_x = np.linspace(lowerLim, upperLim, numPts)
ecdf_y = stats.cumfreq(data, numPts, (lowerLim, upperLim))[0]/len(inData)
#Add zero-point by hand
ecdf_x = np.hstack((0., ecdf_x))
ecdf_y = np.hstack((0., ecdf_y))
# Plot the data
sns.set_style('ticks')
sns.set_context('poster')
C2_8_mystyle.set(36)
plt.plot(nd_x, nd_y, 'k--')
plt.hold(True)
plt.plot(ecdf_x, ecdf_y, color='k')
plt.xlabel('X')
plt.ylabel('Cumulative Probability')
# For the arrow, find the start
ecdf_startIndex = np.min(np.where(ecdf_x >= 2))
arrowStart = np.array([ecdf_x[ecdf_startIndex], ecdf_y[ecdf_startIndex]])
nd_startIndex = np.min(np.where(nd_x >= 2))
arrowEnd = np.array([nd_x[nd_startIndex], nd_y[nd_startIndex]])
arrowDelta = arrowEnd - arrowStart
plt.arrow(arrowStart[0], arrowStart[1], 0, arrowDelta[1],
width=0.05, length_includes_head=True, head_length=0.02, head_width=0.2, color='k')
plt.arrow(arrowStart[0], arrowStart[1]+arrowDelta[1], 0, -arrowDelta[1],
width=0.05, length_includes_head=True, head_length=0.02, head_width=0.2, color='k')
outFile = 'KS_Example.png'
C2_8_mystyle.printout_plain(outFile)
示例9: showChi2
def showChi2():
'''Utility function to show Chi2 distributions'''
t = frange(0, 8, 0.05)
Chi2Vals = [1,2,3,5]
for chi2 in Chi2Vals:
plt.plot(t, stats.chi2.pdf(t, chi2), label='k={0}'.format(chi2))
plt.legend()
plt.xlim(0,8)
plt.xlabel('X')
plt.ylabel('pdf(X)')
plt.axis('tight')
outFile = 'dist_chi2.png'
C2_8_mystyle.printout_plain(outFile)
示例10: showExp
def showExp():
'''Utility function to show exponential distributions'''
t = frange(0, 3, 0.01)
lambdas = [0.5, 1, 1.5]
for par in lambdas:
plt.plot(t, stats.expon.pdf(t, 0, par), label='$\lambda={0:3.1f}$'.format(par))
plt.legend()
plt.xlim(0,3)
plt.xlabel('X')
plt.ylabel('pdf(X)')
plt.axis('tight')
plt.legend()
outFile = 'dist_exp.png'
C2_8_mystyle.printout_plain(outFile)
示例11: show_poisson
def show_poisson():
"""Show an example of Poisson distributions"""
# Arbitrarily select 3 lambda values
lambdas = [1,4,10]
k = np.arange(20) # generate x-values
markersize = 8
for par in lambdas:
plt.plot(k, stats.poisson.pmf(k, par), 'o--', label='$\lambda={0}$'.format(par))
# Format the plot
plt.legend()
plt.title('Poisson distribuition')
plt.xlabel('X')
plt.ylabel('P(X)')
# Show and save the plot
C2_8_mystyle.printout_plain('Poisson_distribution_pmf.png')
示例12: showF
def showF():
'''Utility function to show F distributions'''
t = frange(0, 3, 0.01)
d1s = [1,2,5,100]
d2s = [1,1,2,100]
for (d1,d2) in zip(d1s,d2s):
plt.plot(t, stats.f.pdf(t, d1, d2), label='F({0}/{1})'.format(d1,d2))
plt.legend()
plt.xlim(0,3)
plt.xlabel('X')
plt.ylabel('pdf(X)')
plt.axis('tight')
plt.legend()
outFile = 'dist_f.png'
C2_8_mystyle.printout_plain(outFile)
示例13: show3D
def show3D():
'''Generation of 3D plots'''
# imports specific to the plots in this example
from matplotlib import cm # colormaps
# This module is required for 3D plots!
from mpl_toolkits.mplot3d import Axes3D
# Twice as wide as it is tall.
fig = plt.figure(figsize=plt.figaspect(0.5))
#---- First subplot
# Generate the data
X = np.arange(-5, 5, 0.1)
Y = np.arange(-5, 5, 0.1)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
# Note the definition of "projection", required for 3D plots
#plt.style.use('ggplot')
ax = fig.add_subplot(1, 2, 1, projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.GnBu,
linewidth=0, antialiased=False)
#surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.viridis_r,
#linewidth=0, antialiased=False)
ax.set_zlim3d(-1.01, 1.01)
fig.colorbar(surf, shrink=0.5, aspect=10)
#---- Second subplot
# Get some 3d test-data
from mpl_toolkits.mplot3d.axes3d import get_test_data
ax = fig.add_subplot(1, 2, 2, projection='3d')
X, Y, Z = get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
C2_8_mystyle.printout_plain('3dGraph.png')
示例14: shifted_normal
def shifted_normal():
'''PDF and scatter plot'''
# Plot 3 PDFs (Probability density functions) for normal distributions ----------
# Select 3 mean values, and 3 SDs
myMean = [0,0,0,-2]
mySD = [0.2,1,5,0.5]
t = frange(-5,5,0.02)
# Plot the 3 PDFs, using the color-palette "hls"
with sns.color_palette('hls', 4):
for mu,sigma in zip(myMean, np.sqrt(mySD)):
y = stats.norm.pdf(t, mu, sigma)
plt.plot(t,y, label='$\mu={0}, \; \t\sigma={1:3.1f}$'.format(mu,sigma))
# Format the plot
plt.legend()
plt.xlim([-5,5])
plt.title('Normal Distributions')
# Show the plot, and save the out-file
outFile = 'Normal_Distribution_PDF.png'
C2_8_mystyle.printout_plain(outFile)
# Generate random numbers with a normal distribution ------------------------
myMean = 0
mySD = 3
numData = 500
data = stats.norm.rvs(myMean, mySD, size = numData)
# Plot the data
plt.scatter(np.arange(len(data)), data)
# Format the plot
plt.title('Normally distributed data')
plt.xlim([0,500])
plt.ylim([-10,10])
plt.show()
plt.close()
示例15: doTukey
def doTukey(data, multiComp):
'''Do a pairwise comparison, and show the confidence intervals'''
print((multiComp.tukeyhsd().summary()))
# Calculate the p-values:
res2 = pairwise_tukeyhsd(data['StressReduction'], data['Treatment'])
df = pd.DataFrame(data)
numData = len(df)
numTreatments = len(df.Treatment.unique())
dof = numData - numTreatments
# Show the group names
print((multiComp.groupsunique))
# Generate a print -------------------
# Get the data
xvals = np.arange(3)
res2 = pairwise_tukeyhsd(data['StressReduction'], data['Treatment'])
errors = np.ravel(np.diff(res2.confint)/2)
# Plot them
plt.plot(xvals, res2.meandiffs, 'o')
plt.errorbar(xvals, res2.meandiffs, yerr=errors, ls='o')
# Put on labels
pair_labels = multiComp.groupsunique[np.column_stack(res2._multicomp.pairindices)]
plt.xticks(xvals, pair_labels)
# Format the plot
xlim = -0.5, 2.5
plt.hlines(0, *xlim)
plt.xlim(*xlim)
plt.title('Multiple Comparison of Means - Tukey HSD, FWER=0.05' +
'\n Pairwise Mean Differences')
# Save to outfile, and show the data
outFile = 'multComp.png'
C2_8_mystyle.printout_plain(outFile)