本文整理汇总了Python中Algorithmia.client方法的典型用法代码示例。如果您正苦于以下问题:Python Algorithmia.client方法的具体用法?Python Algorithmia.client怎么用?Python Algorithmia.client使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Algorithmia
的用法示例。
在下文中一共展示了Algorithmia.client方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: abstractToKeyword
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
def abstractToKeyword(title):
process = subprocess.Popen('python scholar.py -c %(count)d -A %(text)s --csv' \
% {"count": 1, "text": title}, shell=True, stdout=subprocess.PIPE)
output=process.communicate()[0]
elements = output.rsplit('|')
lastIndex = len(elements) - 1
LDAinput = [[elements[0], elements[lastIndex]],1]
client = Algorithmia.client('simfAKlzXJA516uRJm37b8tT9b31')
algo = client.algo('kenny/LDA/0.1.3')
results = algo.pipe(LDAinput)
return list(results[0].keys())
示例2: test_create_acl
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
def test_create_acl(self):
c = Algorithmia.client(os.environ['ALGORITHMIA_API_KEY'])
dd = DataDirectory(c, 'data://.my/privatePermissions')
if dd.exists():
dd.delete(True)
dd.create(ReadAcl.private)
dd_perms = DataDirectory(c, 'data://.my/privatePermissions').get_permissions()
self.assertEquals(dd_perms.read_acl, AclType.private)
dd.update_permissions(ReadAcl.public)
dd_perms = DataDirectory(c, 'data://.my/privatePermissions').get_permissions()
self.assertEquals(dd_perms.read_acl, AclType.public)
示例3: generate_sentence
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
def generate_sentence(filepath):
'''
Generates a sentence given a trained trigram model
PARAMETERS:
<str> filepath: location that trained model is located
in Algorithmia API
RETURNS:
<str> output: a randomly generated sentence
'''
client = Algorithmia.client(api_key.key)
input = [filepath, "xxBeGiN142xx", "xxEnD142xx"]
algo = client.algo('ngram/RandomTextFromTrigram/0.1.1')
print algo.pipe(input)
示例4: random
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
def random():
try:
query = wikipedia.random(pages=1)
input = wikipedia.WikipediaPage(title=query).summary
title = wikipedia.WikipediaPage(title=query).title
image = wikipedia.WikipediaPage(title=query).images[0]
client = Algorithmia.client('Simple simR+{}'.format(api_key))
algo = client.algo('nlp/Summarizer/0.1.2')
contents ={
'image': image,
'title': title,
'summary': algo.pipe(input),
'link': 'https://en.wikipedia.org/wiki/{}'.format(wikipedia.random(pages=1))
}
except:
return json.dumps({
'msg': "Sorry, we couldn't find a Wikipedia article matching your search."
})
return json.dumps(contents)
示例5: summarise_img
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
def summarise_img(src, options=False):
'''
Retrieve meta-data for an image web resource.
Use algorithmia, openshift or similar cloud service.
'''
import Algorithmia
client = Algorithmia.client(config.ALGORITHMIA['api_key'])
algo = client.algo('deeplearning/IllustrationTagger/0.2.3')
input = {"image":src}
if options:
# tags (optional) required probs
for opt, value in options.items():
input[opt] = value
# e.g. threshold 0.3 etc
result = algo.pipe(input)
return result
示例6: pull_tweets
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
def pull_tweets():
"""Pull tweets from Twitter API via Algorithmia."""
input = {
"query": q_input,
"numTweets": "700",
"auth": {
"app_key": 'your_consumer_key',
"app_secret": 'your_consumer_secret_key',
"oauth_token": 'your_access_token',
"oauth_token_secret": 'your_access_token_secret'
}
}
client = Algorithmia.client('your_algorithmia_api_key')
algo = client.algo('twitter/RetrieveTweetsWithKeyword/0.1.3')
tweet_list = [{'user_id': record['user']['id'],
'retweet_count': record['retweet_count'],
'text': record['text']}
for record in algo.pipe(input).result]
return tweet_list
示例7: main
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
def main(filepath, outpath, length):
story = ''
client = Algorithmia.client(api_key.key)
alg_path = "data://.algo/ngram/GenerateTrigramFrequencies/temp/trigrams.txt"
generate_trigrams(filepath, alg_path)
while len(re.findall(r'\w+', story)) < length:
print "Generating new paragraph..."
input = ["data://.algo/ngram/GenerateTrigramFrequencies/temp/trigrams.txt", "xxBeGiN142xx", "xxEnD142xx", (randint(1,9))]
new_par = client.algo('/lizmrush/GenerateParagraphFromTrigram/0.1.2').pipe(input)
if len(re.findall(r'\w+', story)) + len(re.findall(r'\w+', new_par)) > length:
break
story += new_par.strip()
story += '\n\n'
print "Word count:"
print len(re.findall(r'\w+', story))
with open(outpath, 'w') as f:
f.write(story.encode('utf8'))
f.close()
print "Complete! Story written to " + outpath
示例8: generate_trigrams
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
def generate_trigrams(corpus, filepath):
'''
Generates a trained trigram model
PARAMETERS:
str[] corpus: array of strings generated from splitting
the original corpus. Needs beginning and
end tags in data
<str> filepath: location that data is stored in Algorithmia
data API
RETURNS:
filepath: location that data is stored in Algorithmia data API
(as confirmation)
'''
with open(corpus, 'r') as myfile:
data = myfile.read().replace('\n', '')
data = data.replace("xxEnD142xx", "xxEnD142xx qq")
data = data.split(" qq ")
input = [data, "xxBeGiN142xx", "xxEnD142xx", filepath]
client = Algorithmia.client(api_key.key)
algo = client.algo('ngram/GenerateTrigramFrequencies/0.1.1')
print "Trigram Frequency txt in data api, filepath is:"
print algo.pipe(input)
示例9: main
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--api-key', required=True, help='algorithmia api key')
parser.add_argument('--connector-path', required=True, help='s3 or dropbox path for the directory to scan')
parser.add_argument('--recursive', action='store_true', help='continue scanning all sub-directories of the connector path')
args = parser.parse_args()
# Initialize Algorithmia Python client
client = Algorithmia.client(args.api_key)
# Get the algorithm we plan to use on each picture
algo = client.algo('deeplearning/ColorfulImageColorization/1.0.1')
algo.set_options(timeout=600) # This is a slow algorithm, so let's bump up the timeout to 10 minutes
# The root level directory that we will traverse
top_level_dir = client.dir(args.connector_path)
# Colorize the files
if args.recursive:
recursivelyColorize(algo, args.connector_path, top_level_dir)
else:
colorizeFilesInDirectory(algo, args.connector_path, top_level_dir)
print 'Done processing!'
示例10:
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
import Algorithmia
input = "https://pbs.twimg.com/profile_images/714630467409018884/2ywNrMx2.jpg"
client = Algorithmia.client('simmp0NmxBIAkbVwazmgI8QQvMg1')
algo = client.algo('sfw/NudityDetection/1.1.4')
print algo.pipe(input)
示例11: send_simple_message
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
import Algorithmia
import requests
# Algorithmia API key here
client = Algorithmia.client("ALGORITHMIA_API_KEY")
example_input = {
"url": "http://algorithmia.com/",
"depth": 3
}
res = client.algo("web/ErrorScanner").set_options(timeout=2000).pipe(example_input)
broken_links = res.result["brokenLinks"]
email_str = ""
# Iterate through our list of broken links
# to create a string we can add to the body of our email
for linkPair in broken_links:
email_str += "broken link: " + linkPair["brokenLink"] + " (referring page: " + linkPair["refPage"] + ")" + "\n\n"
# Print the result from the API call
print email_str
# Send the email
def send_simple_message():
return requests.post(
# Mailgun Documentation: https://documentation.mailgun.com/quickstart-sending.html#send-via-api
"https://api.mailgun.net/v3/YOUR_DOMAIN_NAME/messages",
auth=("api", "YOUR_API_KEY"),
示例12: pull_tweets
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
import re
from collections import defaultdict, Counter
import Algorithmia
client = Algorithmia.client("your_algorithmia_api_key")
def pull_tweets():
input = {
"query": "Thanksgiving",
"numTweets": "700",
"auth": {
"app_key": 'your_consumer_key',
"app_secret": 'your_consumer_secret_key',
"oauth_token": 'your_access_token',
"oauth_token_secret": 'your_access_token_secret'
}
}
twitter_algo = client.algo("twitter/RetrieveTweetsWithKeyword/0.1.3")
result = twitter_algo.pipe(input).result
tweet_list = [tweets['text'] for tweets in result]
return tweet_list
def process_text():
"""Remove emoticons, numbers etc. and returns list of cleaned tweets."""
data = pull_tweets()
regex_remove = "(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)|^RT|http.+?"
stripped_text = [
re.sub(regex_remove, '',
tweets).strip() for tweets in data
示例13: print
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
#Get the user name first
x =raw_input('Enter your name:')
print('Hello ' + x)
y =raw_input('How are you doing today,' +x)
import Algorithmia
input = y
client = Algorithmia.client('simsmuMGjwhXqpi7hcakzab+RoG1')
algo = client.algo('nlp/SentimentAnalysis/0.1.2')
print algo.pipe(input)
示例14: search
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
def search(self, tweet_content, algo_path):
client = Algorithmia.client(settings.ALGORITHMIA_API_KEY)
algo = client.algo(algo_path)
return (algo.pipe(tweet_content))
示例15: somefunction
# 需要导入模块: import Algorithmia [as 别名]
# 或者: from Algorithmia import client [as 别名]
def somefunction(input):
client = Algorithmia.client('simL4K0sq9xovn9rSUqxzGy19R/1')
algo = client.algo('mtman/SentimentAnalysis/0.1.1')
ans = algo.pipe(input).result
return ans