本文整理汇总了Python中whoosh.fields.NUMERIC属性的典型用法代码示例。如果您正苦于以下问题:Python fields.NUMERIC属性的具体用法?Python fields.NUMERIC怎么用?Python fields.NUMERIC使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类whoosh.fields
的用法示例。
在下文中一共展示了fields.NUMERIC属性的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from whoosh import fields [as 别名]
# 或者: from whoosh.fields import NUMERIC [as 别名]
def __init__(self, config, api):
self.config = config
self.api = api
self.cache_dir = user_cache_dir('fac', appauthor=False)
self.storage = FileStorage(os.path.join(self.cache_dir, 'index'))
self.schema = Schema(
name=TEXT(sortable=True, phrase=True, field_boost=3,
analyzer=intraword),
owner=TEXT(sortable=True, field_boost=2.5,
analyzer=intraword),
title=TEXT(field_boost=2.0, phrase=False),
summary=TEXT(phrase=True),
downloads=NUMERIC(sortable=True),
sort_name=SortColumn(),
name_id=ID(stored=True),
)
try:
self.index = self.storage.open_index()
except EmptyIndexError:
self.index = None
self.db = JSONFile(os.path.join(self.cache_dir, 'mods.json'))
示例2: fields_map
# 需要导入模块: from whoosh import fields [as 别名]
# 或者: from whoosh.fields import NUMERIC [as 别名]
def fields_map(self, field_type):
if field_type == "primary":
return ID(stored=True, unique=True)
type_map = {
'date': types.Date,
'datetime': types.DateTime,
'boolean': types.Boolean,
'integer': types.Integer,
'float': types.Float
}
if isinstance(field_type, str):
field_type = type_map.get(field_type, types.Text)
if not isinstance(field_type, type):
field_type = field_type.__class__
if issubclass(field_type, (types.DateTime, types.Date)):
return DATETIME(stored=True, sortable=True)
elif issubclass(field_type, types.Integer):
return NUMERIC(stored=True, numtype=int)
elif issubclass(field_type, types.Float):
return NUMERIC(stored=True, numtype=float)
elif issubclass(field_type, types.Boolean):
return BOOLEAN(stored=True)
return TEXT(stored=True, analyzer=self.analyzer, sortable=False)
示例3: __init__
# 需要导入模块: from whoosh import fields [as 别名]
# 或者: from whoosh.fields import NUMERIC [as 别名]
def __init__(self) -> None:
self.schema = Schema(id=NUMERIC(unique=True, stored=True), canonical_name=STORED(), name=STORED(), name_tokenized=TEXT(stored=False, analyzer=WhooshConstants.tokenized_analyzer), name_stemmed=TEXT(stored=False, analyzer=WhooshConstants.stem_analyzer), name_normalized=TEXT(stored=False, analyzer=WhooshConstants.normalized_analyzer, field_boost=100.0))
示例4: _mail_schema
# 需要导入模块: from whoosh import fields [as 别名]
# 或者: from whoosh.fields import NUMERIC [as 别名]
def _mail_schema(self):
return Schema(
ident=ID(stored=True, unique=True),
sender=ID(stored=False),
to=KEYWORD(stored=False, commas=True),
cc=KEYWORD(stored=False, commas=True),
bcc=KEYWORD(stored=False, commas=True),
subject=NGRAMWORDS(stored=False),
date=NUMERIC(stored=False, sortable=True, bits=64, signed=False),
body=NGRAMWORDS(stored=False),
tag=KEYWORD(stored=True, commas=True),
flags=KEYWORD(stored=True, commas=True),
raw=TEXT(stored=False))
示例5: build_schema
# 需要导入模块: from whoosh import fields [as 别名]
# 或者: from whoosh.fields import NUMERIC [as 别名]
def build_schema(self, fields):
schema_fields = {
ID: WHOOSH_ID(stored=True, unique=True),
DJANGO_CT: WHOOSH_ID(stored=True),
DJANGO_ID: WHOOSH_ID(stored=True),
}
# Grab the number of keys that are hard-coded into Haystack.
# We'll use this to (possibly) fail slightly more gracefully later.
initial_key_count = len(schema_fields)
content_field_name = ''
for field_name, field_class in fields.items():
if field_class.is_multivalued:
if field_class.indexed is False:
schema_fields[field_class.index_fieldname] = IDLIST(stored=True, field_boost=field_class.boost)
else:
schema_fields[field_class.index_fieldname] = KEYWORD(stored=True, commas=True, scorable=True, field_boost=field_class.boost)
elif field_class.field_type in ['date', 'datetime']:
schema_fields[field_class.index_fieldname] = DATETIME(stored=field_class.stored, sortable=True)
elif field_class.field_type == 'integer':
schema_fields[field_class.index_fieldname] = NUMERIC(stored=field_class.stored, numtype=int, field_boost=field_class.boost)
elif field_class.field_type == 'float':
schema_fields[field_class.index_fieldname] = NUMERIC(stored=field_class.stored, numtype=float, field_boost=field_class.boost)
elif field_class.field_type == 'boolean':
# Field boost isn't supported on BOOLEAN as of 1.8.2.
schema_fields[field_class.index_fieldname] = BOOLEAN(stored=field_class.stored)
elif field_class.field_type == 'ngram':
schema_fields[field_class.index_fieldname] = NGRAM(minsize=3, maxsize=15, stored=field_class.stored, field_boost=field_class.boost)
elif field_class.field_type == 'edge_ngram':
schema_fields[field_class.index_fieldname] = NGRAMWORDS(minsize=2, maxsize=15, at='start', stored=field_class.stored, field_boost=field_class.boost)
else:
# schema_fields[field_class.index_fieldname] = TEXT(stored=True, analyzer=StemmingAnalyzer(), field_boost=field_class.boost, sortable=True)
schema_fields[field_class.index_fieldname] = TEXT(stored=True,
analyzer=ChineseAnalyzer(),
field_boost=field_class.boost,
sortable=True)
if field_class.document is True:
content_field_name = field_class.index_fieldname
schema_fields[field_class.index_fieldname].spelling = True
# Fail more gracefully than relying on the backend to die if no fields
# are found.
if len(schema_fields) <= initial_key_count:
raise SearchBackendError("No fields were found in any search_indexes. Please correct this before attempting to search.")
return (content_field_name, Schema(**schema_fields))
示例6: build_schema
# 需要导入模块: from whoosh import fields [as 别名]
# 或者: from whoosh.fields import NUMERIC [as 别名]
def build_schema(self, fields):
schema_fields = {
ID: WHOOSH_ID(stored=True, unique=True),
DJANGO_CT: WHOOSH_ID(stored=True),
DJANGO_ID: WHOOSH_ID(stored=True),
}
# Grab the number of keys that are hard-coded into Haystack.
# We'll use this to (possibly) fail slightly more gracefully later.
initial_key_count = len(schema_fields)
content_field_name = ''
for field_name, field_class in fields.items():
if field_class.is_multivalued:
if field_class.indexed is False:
schema_fields[field_class.index_fieldname] = IDLIST(stored=True, field_boost=field_class.boost)
else:
schema_fields[field_class.index_fieldname] = KEYWORD(stored=True, commas=True, scorable=True,
field_boost=field_class.boost)
elif field_class.field_type in ['date', 'datetime']:
schema_fields[field_class.index_fieldname] = DATETIME(stored=field_class.stored, sortable=True)
elif field_class.field_type == 'integer':
schema_fields[field_class.index_fieldname] = NUMERIC(stored=field_class.stored, numtype=int,
field_boost=field_class.boost)
elif field_class.field_type == 'float':
schema_fields[field_class.index_fieldname] = NUMERIC(stored=field_class.stored, numtype=float,
field_boost=field_class.boost)
elif field_class.field_type == 'boolean':
# Field boost isn't supported on BOOLEAN as of 1.8.2.
schema_fields[field_class.index_fieldname] = BOOLEAN(stored=field_class.stored)
elif field_class.field_type == 'ngram':
schema_fields[field_class.index_fieldname] = NGRAM(minsize=3, maxsize=15, stored=field_class.stored,
field_boost=field_class.boost)
elif field_class.field_type == 'edge_ngram':
schema_fields[field_class.index_fieldname] = NGRAMWORDS(minsize=2, maxsize=15, at='start',
stored=field_class.stored,
field_boost=field_class.boost)
else: # StemmingAnalyzer->ChineseAnalyzer
schema_fields[field_class.index_fieldname] = TEXT(stored=True, analyzer=ChineseAnalyzer(),
field_boost=field_class.boost, sortable=True)
if field_class.document is True:
content_field_name = field_class.index_fieldname
schema_fields[field_class.index_fieldname].spelling = True
# Fail more gracefully than relying on the backend to die if no fields
# are found.
if len(schema_fields) <= initial_key_count:
raise SearchBackendError(
"No fields were found in any search_indexes. Please correct this before attempting to search.")
return (content_field_name, Schema(**schema_fields))
示例7: build_schema
# 需要导入模块: from whoosh import fields [as 别名]
# 或者: from whoosh.fields import NUMERIC [as 别名]
def build_schema(self, fields):
schema_fields = {
ID: WHOOSH_ID(stored=True, unique=True),
DJANGO_CT: WHOOSH_ID(stored=True),
DJANGO_ID: WHOOSH_ID(stored=True),
}
# Grab the number of keys that are hard-coded into Haystack.
# We'll use this to (possibly) fail slightly more gracefully later.
initial_key_count = len(schema_fields)
content_field_name = ''
for field_name, field_class in fields.items():
if field_class.is_multivalued:
if field_class.indexed is False:
schema_fields[field_class.index_fieldname] = IDLIST(stored=True, field_boost=field_class.boost)
else:
schema_fields[field_class.index_fieldname] = KEYWORD(stored=True, commas=True, scorable=True, field_boost=field_class.boost)
elif field_class.field_type in ['date', 'datetime']:
schema_fields[field_class.index_fieldname] = DATETIME(stored=field_class.stored, sortable=True)
elif field_class.field_type == 'integer':
schema_fields[field_class.index_fieldname] = NUMERIC(stored=field_class.stored, numtype=int, field_boost=field_class.boost)
elif field_class.field_type == 'float':
schema_fields[field_class.index_fieldname] = NUMERIC(stored=field_class.stored, numtype=float, field_boost=field_class.boost)
elif field_class.field_type == 'boolean':
# Field boost isn't supported on BOOLEAN as of 1.8.2.
schema_fields[field_class.index_fieldname] = BOOLEAN(stored=field_class.stored)
elif field_class.field_type == 'ngram':
schema_fields[field_class.index_fieldname] = NGRAM(minsize=3, maxsize=15, stored=field_class.stored, field_boost=field_class.boost)
elif field_class.field_type == 'edge_ngram':
schema_fields[field_class.index_fieldname] = NGRAMWORDS(minsize=2, maxsize=15, at='start', stored=field_class.stored, field_boost=field_class.boost)
else:
# 调用结巴分词
schema_fields[field_class.index_fieldname] = TEXT(stored=True, analyzer=ChineseAnalyzer(), field_boost=field_class.boost, sortable=True)
if field_class.document is True:
content_field_name = field_class.index_fieldname
schema_fields[field_class.index_fieldname].spelling = True
# Fail more gracefully than relying on the backend to die if no fields
# are found.
if len(schema_fields) <= initial_key_count:
raise SearchBackendError("No fields were found in any search_indexes. Please correct this before attempting to search.")
return (content_field_name, Schema(**schema_fields))
示例8: build_schema
# 需要导入模块: from whoosh import fields [as 别名]
# 或者: from whoosh.fields import NUMERIC [as 别名]
def build_schema(self, fields):
schema_fields = {
ID: WHOOSH_ID(stored=True, unique=True),
DJANGO_CT: WHOOSH_ID(stored=True),
DJANGO_ID: WHOOSH_ID(stored=True),
}
# Grab the number of keys that are hard-coded into Haystack.
# We'll use this to (possibly) fail slightly more gracefully later.
initial_key_count = len(schema_fields)
content_field_name = ''
for field_name, field_class in fields.items():
if field_class.is_multivalued:
if field_class.indexed is False:
schema_fields[field_class.index_fieldname] = IDLIST(stored=True, field_boost=field_class.boost)
else:
schema_fields[field_class.index_fieldname] = KEYWORD(stored=True, commas=True, scorable=True, field_boost=field_class.boost)
elif field_class.field_type in ['date', 'datetime']:
schema_fields[field_class.index_fieldname] = DATETIME(stored=field_class.stored, sortable=True)
elif field_class.field_type == 'integer':
schema_fields[field_class.index_fieldname] = NUMERIC(stored=field_class.stored, numtype=int, field_boost=field_class.boost)
elif field_class.field_type == 'float':
schema_fields[field_class.index_fieldname] = NUMERIC(stored=field_class.stored, numtype=float, field_boost=field_class.boost)
elif field_class.field_type == 'boolean':
# Field boost isn't supported on BOOLEAN as of 1.8.2.
schema_fields[field_class.index_fieldname] = BOOLEAN(stored=field_class.stored)
elif field_class.field_type == 'ngram':
schema_fields[field_class.index_fieldname] = NGRAM(minsize=3, maxsize=15, stored=field_class.stored, field_boost=field_class.boost)
elif field_class.field_type == 'edge_ngram':
schema_fields[field_class.index_fieldname] = NGRAMWORDS(minsize=2, maxsize=15, at='start', stored=field_class.stored, field_boost=field_class.boost)
else:
schema_fields[field_class.index_fieldname] = TEXT(stored=True, analyzer=ChineseAnalyzer(), field_boost=field_class.boost, sortable=True)
if field_class.document is True:
content_field_name = field_class.index_fieldname
schema_fields[field_class.index_fieldname].spelling = True
# Fail more gracefully than relying on the backend to die if no fields
# are found.
if len(schema_fields) <= initial_key_count:
raise SearchBackendError("No fields were found in any search_indexes. Please correct this before attempting to search.")
return (content_field_name, Schema(**schema_fields))