本文整理汇总了Python中vggish_params.LOG_OFFSET属性的典型用法代码示例。如果您正苦于以下问题:Python vggish_params.LOG_OFFSET属性的具体用法?Python vggish_params.LOG_OFFSET怎么用?Python vggish_params.LOG_OFFSET使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类vggish_params
的用法示例。
在下文中一共展示了vggish_params.LOG_OFFSET属性的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: waveform_to_examples
# 需要导入模块: import vggish_params [as 别名]
# 或者: from vggish_params import LOG_OFFSET [as 别名]
def waveform_to_examples(data, sample_rate):
# Convert to mono.
if len(data.shape) > 1:
data = np.mean(data, axis=1)
# Resample to the rate assumed by VGGish.
if sample_rate != vggish_params.SAMPLE_RATE:
data = resampy.resample(data, sample_rate, vggish_params.SAMPLE_RATE)
# Compute log mel spectrogram features.
log_mel = mel_features.log_mel_spectrogram(
data,
audio_sample_rate=vggish_params.SAMPLE_RATE,
log_offset=vggish_params.LOG_OFFSET,
window_length_secs=vggish_params.STFT_WINDOW_LENGTH_SECONDS,
hop_length_secs=vggish_params.STFT_HOP_LENGTH_SECONDS,
num_mel_bins=vggish_params.NUM_MEL_BINS,
lower_edge_hertz=vggish_params.MEL_MIN_HZ,
upper_edge_hertz=vggish_params.MEL_MAX_HZ)
# Frame features into examples.
features_sample_rate = 1.0 / vggish_params.STFT_HOP_LENGTH_SECONDS
example_window_length = int(round(
vggish_params.EXAMPLE_WINDOW_SECONDS * features_sample_rate))
example_hop_length = int(round(
vggish_params.EXAMPLE_HOP_SECONDS * features_sample_rate))
log_mel_examples = mel_features.frame(
log_mel,
window_length=example_window_length,
hop_length=example_hop_length)
return log_mel_examples
示例2: waveform_to_examples_subtract_bg
# 需要导入模块: import vggish_params [as 别名]
# 或者: from vggish_params import LOG_OFFSET [as 别名]
def waveform_to_examples_subtract_bg(data, sample_rate, bg):
# Convert to mono.
if len(data.shape) > 1:
data = np.mean(data, axis=1)
# Resample to the rate assumed by VGGish.
if sample_rate != vggish_params.SAMPLE_RATE:
data = resampy.resample(data, sample_rate, vggish_params.SAMPLE_RATE)
# Compute log mel spectrogram features.
log_mel = mel_features.log_mel_spectrogram_subtract_bg(
data,
bg,
audio_sample_rate=vggish_params.SAMPLE_RATE,
log_offset=vggish_params.LOG_OFFSET,
window_length_secs=vggish_params.STFT_WINDOW_LENGTH_SECONDS,
hop_length_secs=vggish_params.STFT_HOP_LENGTH_SECONDS,
num_mel_bins=vggish_params.NUM_MEL_BINS,
lower_edge_hertz=vggish_params.MEL_MIN_HZ,
upper_edge_hertz=vggish_params.MEL_MAX_HZ)
# Frame features into examples.
features_sample_rate = 1.0 / vggish_params.STFT_HOP_LENGTH_SECONDS
example_window_length = int(round(
vggish_params.EXAMPLE_WINDOW_SECONDS * features_sample_rate))
example_hop_length = int(round(
vggish_params.EXAMPLE_HOP_SECONDS * features_sample_rate))
log_mel_examples = mel_features.frame(
log_mel,
window_length=example_window_length,
hop_length=example_hop_length)
return log_mel_examples
示例3: waveform_to_examples
# 需要导入模块: import vggish_params [as 别名]
# 或者: from vggish_params import LOG_OFFSET [as 别名]
def waveform_to_examples(data, sample_rate):
"""Converts audio waveform into an array of examples for VGGish.
Args:
data: np.array of either one dimension (mono) or two dimensions
(multi-channel, with the outer dimension representing channels).
Each sample is generally expected to lie in the range [-1.0, +1.0],
although this is not required.
sample_rate: Sample rate of data.
Returns:
3-D np.array of shape [num_examples, num_frames, num_bands] which represents
a sequence of examples, each of which contains a patch of log mel
spectrogram, covering num_frames frames of audio and num_bands mel frequency
bands, where the frame length is vggish_params.STFT_HOP_LENGTH_SECONDS.
"""
# Convert to mono.
if len(data.shape) > 1:
data = np.mean(data, axis=1)
# Resample to the rate assumed by VGGish.
if sample_rate != vggish_params.SAMPLE_RATE:
data = resampy.resample(data, sample_rate, vggish_params.SAMPLE_RATE)
# Compute log mel spectrogram features.
log_mel = mel_features.log_mel_spectrogram(
data,
audio_sample_rate=vggish_params.SAMPLE_RATE,
log_offset=vggish_params.LOG_OFFSET,
window_length_secs=vggish_params.STFT_WINDOW_LENGTH_SECONDS,
hop_length_secs=vggish_params.STFT_HOP_LENGTH_SECONDS,
num_mel_bins=vggish_params.NUM_MEL_BINS,
lower_edge_hertz=vggish_params.MEL_MIN_HZ,
upper_edge_hertz=vggish_params.MEL_MAX_HZ)
# Frame features into examples.
features_sample_rate = 1.0 / vggish_params.STFT_HOP_LENGTH_SECONDS
example_window_length = int(round(
vggish_params.EXAMPLE_WINDOW_SECONDS * features_sample_rate))
example_hop_length = int(round(
vggish_params.EXAMPLE_HOP_SECONDS * features_sample_rate))
log_mel_examples = mel_features.frame(
log_mel,
window_length=example_window_length,
hop_length=example_hop_length)
return log_mel_examples
示例4: define_vggish_slim
# 需要导入模块: import vggish_params [as 别名]
# 或者: from vggish_params import LOG_OFFSET [as 别名]
def define_vggish_slim(training=False):
"""Defines the VGGish TensorFlow model.
All ops are created in the current default graph, under the scope 'vggish/'.
The input is a placeholder named 'vggish/input_features' of type float32 and
shape [batch_size, num_frames, num_bands] where batch_size is variable and
num_frames and num_bands are constants, and [num_frames, num_bands] represents
a log-mel-scale spectrogram patch covering num_bands frequency bands and
num_frames time frames (where each frame step is usually 10ms). This is
produced by computing the stabilized log(mel-spectrogram + params.LOG_OFFSET).
The output is an op named 'vggish/embedding' which produces the activations of
a 128-D embedding layer, which is usually the penultimate layer when used as
part of a full model with a final classifier layer.
Args:
training: If true, all parameters are marked trainable.
Returns:
The op 'vggish/embeddings'.
"""
# Defaults:
# - All weights are initialized to N(0, INIT_STDDEV).
# - All biases are initialized to 0.
# - All activations are ReLU.
# - All convolutions are 3x3 with stride 1 and SAME padding.
# - All max-pools are 2x2 with stride 2 and SAME padding.
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(
stddev=params.INIT_STDDEV),
biases_initializer=tf.zeros_initializer(),
activation_fn=tf.nn.relu,
trainable=training), \
slim.arg_scope([slim.conv2d],
kernel_size=[3, 3], stride=1, padding='SAME'), \
slim.arg_scope([slim.max_pool2d],
kernel_size=[2, 2], stride=2, padding='SAME'), \
tf.variable_scope('vggish'):
# Input: a batch of 2-D log-mel-spectrogram patches.
features = tf.placeholder(
tf.float32, shape=(None, params.NUM_FRAMES, params.NUM_BANDS),
name='input_features')
# Reshape to 4-D so that we can convolve a batch with conv2d().
net = tf.reshape(features, [-1, params.NUM_FRAMES, params.NUM_BANDS, 1])
# The VGG stack of alternating convolutions and max-pools.
net = slim.conv2d(net, 64, scope='conv1')
net = slim.max_pool2d(net, scope='pool1')
net = slim.conv2d(net, 128, scope='conv2')
net = slim.max_pool2d(net, scope='pool2')
net = slim.repeat(net, 2, slim.conv2d, 256, scope='conv3')
net = slim.max_pool2d(net, scope='pool3')
net = slim.repeat(net, 2, slim.conv2d, 512, scope='conv4')
net = slim.max_pool2d(net, scope='pool4')
# Flatten before entering fully-connected layers
net = slim.flatten(net)
net = slim.repeat(net, 2, slim.fully_connected, 4096, scope='fc1')
# The embedding layer.
net = slim.fully_connected(net, params.EMBEDDING_SIZE, scope='fc2')
return tf.identity(net, name='embedding')