本文整理汇总了Python中torch.nn.modules.rnn.LSTM属性的典型用法代码示例。如果您正苦于以下问题:Python rnn.LSTM属性的具体用法?Python rnn.LSTM怎么用?Python rnn.LSTM使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类torch.nn.modules.rnn
的用法示例。
在下文中一共展示了rnn.LSTM属性的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_dropout_is_not_applied_to_output_or_returned_hidden_states
# 需要导入模块: from torch.nn.modules import rnn [as 别名]
# 或者: from torch.nn.modules.rnn import LSTM [as 别名]
def test_dropout_is_not_applied_to_output_or_returned_hidden_states(self):
sorted_tensor, sorted_sequence, _, _ = sort_batch_by_length(
self.random_tensor, self.sequence_lengths
)
tensor = pack_padded_sequence(
sorted_tensor, sorted_sequence.data.tolist(), batch_first=True
)
lstm = AugmentedLstm(10, 11, recurrent_dropout_probability=0.5)
output, (hidden_state, _) = lstm(tensor)
output_sequence, _ = pad_packed_sequence(output, batch_first=True)
# Test returned output sequence
num_hidden_dims_zero_across_timesteps = ((output_sequence.sum(1) == 0).sum()).item()
# If this is not True then dropout has been applied to the output of the LSTM
assert not num_hidden_dims_zero_across_timesteps
# Should not have dropout applied to the last hidden state as this is not used
# within the LSTM and makes it more consistent with the `torch.nn.LSTM` where
# dropout is not applied to any of it's output. This would also make it more
# consistent with the Keras LSTM implementation as well.
hidden_state = hidden_state.squeeze()
num_hidden_dims_zero_across_timesteps = ((hidden_state == 0).sum()).item()
assert not num_hidden_dims_zero_across_timesteps
示例2: __init__
# 需要导入模块: from torch.nn.modules import rnn [as 别名]
# 或者: from torch.nn.modules.rnn import LSTM [as 别名]
def __init__(self, num_embeddings, num_labels):
super(Net, self).__init__()
self.emb = torch.nn.Embedding(num_embeddings, Config.embedding_dim, padding_idx=0)
self.lstm1 = LSTM(Config.embedding_dim, Config.hidden_size, num_layers=1, batch_first=True, bias=True, dropout=Config.dropout, bidirectional=True)
self.lstm2 = LSTM(Config.embedding_dim, Config.hidden_size, num_layers=1, batch_first=True, bias=True, dropout=Config.dropout, bidirectional=True)
self.linear = torch.nn.Linear(Config.hidden_size*4, num_labels)
self.loss = torch.nn.CrossEntropyLoss()
self.pred = torch.nn.Softmax()
self.h0 = Variable(torch.zeros(2,Config.batch_size, Config.hidden_size))
self.c0 = Variable(torch.zeros(2,Config.batch_size, Config.hidden_size))
self.h1 = Variable(torch.zeros(2,Config.batch_size, Config.hidden_size))
self.c1 = Variable(torch.zeros(2,Config.batch_size, Config.hidden_size))
if Config.cuda:
self.h0 = self.h0.cuda()
self.c0 = self.c0.cuda()
self.h1 = self.h1.cuda()
self.c1 = self.c1.cuda()
示例3: test_augmented_lstm_computes_same_function_as_pytorch_lstm
# 需要导入模块: from torch.nn.modules import rnn [as 别名]
# 或者: from torch.nn.modules.rnn import LSTM [as 别名]
def test_augmented_lstm_computes_same_function_as_pytorch_lstm(self):
augmented_lstm = AugmentedLstm(10, 11)
pytorch_lstm = LSTM(10, 11, num_layers=1, batch_first=True)
# Initialize all weights to be == 1.
constant_init = Initializer.from_params(Params({"type": "constant", "val": 1.0}))
initializer = InitializerApplicator([(".*", constant_init)])
initializer(augmented_lstm)
initializer(pytorch_lstm)
initial_state = torch.zeros([1, 5, 11])
initial_memory = torch.zeros([1, 5, 11])
# Use bigger numbers to avoid floating point instability.
sorted_tensor, sorted_sequence, _, _ = sort_batch_by_length(
self.random_tensor * 5.0, self.sequence_lengths
)
lstm_input = pack_padded_sequence(
sorted_tensor, sorted_sequence.data.tolist(), batch_first=True
)
augmented_output, augmented_state = augmented_lstm(
lstm_input, (initial_state, initial_memory)
)
pytorch_output, pytorch_state = pytorch_lstm(lstm_input, (initial_state, initial_memory))
pytorch_output_sequence, _ = pad_packed_sequence(pytorch_output, batch_first=True)
augmented_output_sequence, _ = pad_packed_sequence(augmented_output, batch_first=True)
numpy.testing.assert_array_almost_equal(
pytorch_output_sequence.data.numpy(), augmented_output_sequence.data.numpy(), decimal=4
)
numpy.testing.assert_array_almost_equal(
pytorch_state[0].data.numpy(), augmented_state[0].data.numpy(), decimal=4
)
numpy.testing.assert_array_almost_equal(
pytorch_state[1].data.numpy(), augmented_state[1].data.numpy(), decimal=4
)
示例4: forward
# 需要导入模块: from torch.nn.modules import rnn [as 别名]
# 或者: from torch.nn.modules.rnn import LSTM [as 别名]
def forward(self, data, time_steps, run_backwards = True):
# IMPORTANT: assumes that 'data' already has mask concatenated to it
# data shape: [n_traj, n_tp, n_dims]
# shape required for rnn: (seq_len, batch, input_size)
# t0: not used here
n_traj = data.size(0)
assert(not torch.isnan(data).any())
assert(not torch.isnan(time_steps).any())
data = data.permute(1,0,2)
if run_backwards:
# Look at data in the reverse order: from later points to the first
data = utils.reverse(data)
if self.use_delta_t:
delta_t = time_steps[1:] - time_steps[:-1]
if run_backwards:
# we are going backwards in time with
delta_t = utils.reverse(delta_t)
# append zero delta t in the end
delta_t = torch.cat((delta_t, torch.zeros(1).to(self.device)))
delta_t = delta_t.unsqueeze(1).repeat((1,n_traj)).unsqueeze(-1)
data = torch.cat((delta_t, data),-1)
outputs, _ = self.gru_rnn(data)
# LSTM output shape: (seq_len, batch, num_directions * hidden_size)
last_output = outputs[-1]
self.extra_info ={"rnn_outputs": outputs, "time_points": time_steps}
mean, std = utils.split_last_dim(self.hiddens_to_z0(last_output))
std = std.abs()
assert(not torch.isnan(mean).any())
assert(not torch.isnan(std).any())
return mean.unsqueeze(0), std.unsqueeze(0)
示例5: test_augmented_lstm_computes_same_function_as_pytorch_lstm
# 需要导入模块: from torch.nn.modules import rnn [as 别名]
# 或者: from torch.nn.modules.rnn import LSTM [as 别名]
def test_augmented_lstm_computes_same_function_as_pytorch_lstm(self):
augmented_lstm = AugmentedLstm(10, 11)
pytorch_lstm = LSTM(10, 11, num_layers=1, batch_first=True)
# Initialize all weights to be == 1.
initializer = InitializerApplicator([(u".*", lambda tensor: torch.nn.init.constant_(tensor, 1.))])
initializer(augmented_lstm)
initializer(pytorch_lstm)
initial_state = torch.zeros([1, 5, 11])
initial_memory = torch.zeros([1, 5, 11])
# Use bigger numbers to avoid floating point instability.
sorted_tensor, sorted_sequence, _, _ = sort_batch_by_length(self.random_tensor * 5., self.sequence_lengths)
lstm_input = pack_padded_sequence(sorted_tensor, sorted_sequence.data.tolist(), batch_first=True)
augmented_output, augmented_state = augmented_lstm(lstm_input, (initial_state, initial_memory))
pytorch_output, pytorch_state = pytorch_lstm(lstm_input, (initial_state, initial_memory))
pytorch_output_sequence, _ = pad_packed_sequence(pytorch_output, batch_first=True)
augmented_output_sequence, _ = pad_packed_sequence(augmented_output, batch_first=True)
numpy.testing.assert_array_almost_equal(pytorch_output_sequence.data.numpy(),
augmented_output_sequence.data.numpy(), decimal=4)
numpy.testing.assert_array_almost_equal(pytorch_state[0].data.numpy(),
augmented_state[0].data.numpy(), decimal=4)
numpy.testing.assert_array_almost_equal(pytorch_state[1].data.numpy(),
augmented_state[1].data.numpy(), decimal=4)
示例6: __init__
# 需要导入模块: from torch.nn.modules import rnn [as 别名]
# 或者: from torch.nn.modules.rnn import LSTM [as 别名]
def __init__(
self,
encoder_output_dim: int,
action_embedding_dim: int,
input_attention: Attention,
activation: Activation = Activation.by_name("relu")(),
add_action_bias: bool = True,
dropout: float = 0.0,
num_layers: int = 1,
) -> None:
super().__init__()
self._input_attention = input_attention
self._add_action_bias = add_action_bias
self._activation = activation
self._num_layers = num_layers
# Decoder output dim needs to be the same as the encoder output dim since we initialize the
# hidden state of the decoder with the final hidden state of the encoder.
output_dim = encoder_output_dim
input_dim = output_dim
# Our decoder input will be the concatenation of the attended encoder hidden state (i.e.,
# the attended question encoding) and the previous action embedding, and we'll project that
# down to the decoder's `input_dim`, which we arbitrarily set to be the same as
# `output_dim`.
self._input_projection_layer = Linear(encoder_output_dim + action_embedding_dim, input_dim)
# Before making a prediction, we'll compute an attention over the input given our updated
# hidden state. Then we concatenate those with the decoder state and project to
# `action_embedding_dim` to make a prediction.
self._output_projection_layer = Linear(
output_dim + encoder_output_dim, action_embedding_dim
)
if self._num_layers > 1:
self._decoder_cell = LSTM(input_dim, output_dim, self._num_layers)
else:
# We use a ``LSTMCell`` if we just have one layer because it is slightly faster since we are
# just running the LSTM for one step each time.
self._decoder_cell = LSTMCell(input_dim, output_dim)
if dropout > 0:
self._dropout = torch.nn.Dropout(p=dropout)
else:
self._dropout = lambda x: x