本文整理汇总了Python中tflearn.DNN属性的典型用法代码示例。如果您正苦于以下问题:Python tflearn.DNN属性的具体用法?Python tflearn.DNN怎么用?Python tflearn.DNN使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类tflearn
的用法示例。
在下文中一共展示了tflearn.DNN属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def main(filename, frames, batch_size, num_classes, input_length):
"""From the blog post linked above."""
# Get our data.
X_train, _, y_train, _ = get_data(filename, frames, num_classes, input_length)
# Get sizes.
num_classes = len(y_train[0])
# Get our network.
net = get_network_wide(frames, input_length, num_classes)
# Get our model.
model = tflearn.DNN(net, tensorboard_verbose=0)
model.load('checkpoints/rnn.tflearn')
# Evaluate.
print(model.evaluate(X_train, y_train))
示例2: main
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def main(filename, frames, batch_size, num_classes, input_length):
"""From the blog post linked above."""
# Get our data.
X_train, X_test, y_train, y_test = get_data(filename, frames, num_classes, input_length)
# Get sizes.
num_classes = len(y_train[0])
# Get our network.
net = get_network_wide(frames, input_length, num_classes)
# Train the model.
model = tflearn.DNN(net, tensorboard_verbose=0)
model.fit(X_train, y_train, validation_set=(X_test, y_test),
show_metric=True, batch_size=batch_size, snapshot_step=100,
n_epoch=4)
# Save it.
model.save('checkpoints/rnn.tflearn')
示例3: resnext
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def resnext(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'):
net = input_data(shape=[None, width, height, 3], name='input')
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
net = tflearn.layers.conv.resnext_block(net, n, 16, 32)
net = tflearn.resnext_block(net, 1, 32, 32, downsample=True)
net = tflearn.resnext_block(net, n-1, 32, 32)
net = tflearn.resnext_block(net, 1, 64, 32, downsample=True)
net = tflearn.resnext_block(net, n-1, 64, 32)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
# Regression
net = tflearn.fully_connected(net, output, activation='softmax')
opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
net = tflearn.regression(net, optimizer=opt,
loss='categorical_crossentropy')
model = tflearn.DNN(net,
max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例4: build_network
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def build_network(self):
print("---> Starting Neural Network")
self.network = input_data(shape = [None, 48, 48, 1])
self.network = conv_2d(self.network, 64, 5, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = conv_2d(self.network, 64, 5, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = conv_2d(self.network, 128, 4, activation = 'relu')
self.network = dropout(self.network, 0.3)
self.network = fully_connected(self.network, 3072, activation = 'relu')
self.network = fully_connected(self.network, len(self.target_classes), activation = 'softmax')
self.network = regression(self.network,
optimizer = 'momentum',
loss = 'categorical_crossentropy')
self.model = tflearn.DNN(
self.network,
checkpoint_path = 'model_1_nimish',
max_checkpoints = 1,
tensorboard_verbose = 2
)
self.load_model()
示例5: test_feed_dict_no_None
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def test_feed_dict_no_None(self):
X = [[0., 0., 0., 0.], [1., 1., 1., 1.], [0., 0., 1., 0.], [1., 1., 1., 0.]]
Y = [[1., 0.], [0., 1.], [1., 0.], [0., 1.]]
with tf.Graph().as_default():
g = tflearn.input_data(shape=[None, 4], name="X_in")
g = tflearn.reshape(g, new_shape=[-1, 2, 2, 1])
g = tflearn.conv_2d(g, 4, 2)
g = tflearn.conv_2d(g, 4, 1)
g = tflearn.max_pool_2d(g, 2)
g = tflearn.fully_connected(g, 2, activation='softmax')
g = tflearn.regression(g, optimizer='sgd', learning_rate=1.)
m = tflearn.DNN(g)
def do_fit():
m.fit({"X_in": X, 'non_existent': X}, Y, n_epoch=30, snapshot_epoch=False)
self.assertRaisesRegexp(Exception, "Feed dict asks for variable named 'non_existent' but no such variable is known to exist", do_fit)
示例6: build_simple_model
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def build_simple_model(self):
"""Build a simple model for test
Returns:
DNN, [ (input layer name, input placeholder, input data) ], Target data
"""
inputPlaceholder1, inputPlaceholder2 = \
tf.placeholder(tf.float32, (1, 1), name = "input1"), tf.placeholder(tf.float32, (1, 1), name = "input2")
input1 = tflearn.input_data(placeholder = inputPlaceholder1)
input2 = tflearn.input_data(placeholder = inputPlaceholder2)
network = tflearn.merge([ input1, input2 ], "sum")
network = tflearn.reshape(network, (1, 1))
network = tflearn.fully_connected(network, 1)
network = tflearn.regression(network)
return (
tflearn.DNN(network),
[ ("input1:0", inputPlaceholder1, self.INPUT_DATA_1), ("input2:0", inputPlaceholder2, self.INPUT_DATA_2) ],
self.TARGET,
)
示例7: get_nn_model
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def get_nn_model(checkpoint_path='nn_motor_model', session=None):
# Input is a single value (raw motor value)
network = input_data(shape=[None, 1], name='input')
# Hidden layer no.1,
network = fully_connected(network, 12, activation='linear')
# Output layer
network = fully_connected(network, 1, activation='tanh')
# regression
network = regression(network, loss='mean_square', metric='accuracy', name='target')
# Verbosity yay nay
model = tflearn.DNN(network, tensorboard_verbose=3, checkpoint_path=checkpoint_path, session=session)
return model
示例8: createDNNLayers
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def createDNNLayers(self, x, y):
###############################################################
#
# Sets up the DNN layers, configuration in required/confs.json
#
###############################################################
net = tflearn.input_data(shape=[None, len(x[0])])
for i in range(self._confs["NLU"]['FcLayers']):
net = tflearn.fully_connected(net, self._confs["NLU"]['FcUnits'])
net = tflearn.fully_connected(net, len(y[0]), activation=str(self._confs["NLU"]['Activation']))
if self._confs["NLU"]['Regression']:
net = tflearn.regression(net)
return net
示例9: finalize_get_model
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def finalize_get_model(net, flags):
net['gap'], curr = dup(global_avg_pool(net['conv_final'], name='gap'))
net['final'] = regression(curr,
optimizer='adam',
learning_rate=flags.lr,
batch_size=flags.bs,
loss='softmax_categorical_crossentropy',
name='target',
n_classes=flags.nc,
shuffle_batches=True)
model = tflearn.DNN(net['final'],
tensorboard_verbose=0,
tensorboard_dir=flags.logdir,
best_checkpoint_path=os.path.join(flags.logdir,
flags.run_id,
flags.run_id),
best_val_accuracy=flags.acc_save)
model.net_dict = net
model.flags = flags
return model
示例10: test_case1
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def test_case1():
x = [1,2,3]
y = [0.01,0.99]
# 多组x作为输入样本
X = np.array(np.repeat([x], 1, axis=0))
# 多组y作为样本的y值
Y = np.array(np.repeat([y], 1, axis=0))
#X = np.array([x1,x2], dtype=np.float32)
#Y = np.array([y1,y2])
# 这里的第二个数对应了x是多少维的向量
net = tflearn.input_data(shape=[None, 3])
#net = tflearn.fully_connected(net, 32)
net = tflearn.fully_connected(net, 2)
# 这里的第二个参数对应了输出的y是多少维的向量
#net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net)
model = tflearn.DNN(net)
model.fit(X, Y, n_epoch=1000, batch_size=1, show_metric=True, snapshot_epoch=False)
pred = model.predict([x])
print(pred)
示例11: build_estimator
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def build_estimator(model_dir, model_type, embeddings,index_map, combination_method):
"""Build an estimator."""
# Continuous base columns.
node1 = tf.contrib.layers.real_valued_column("node1")
deep_columns = [node1]
if model_type == "regressor":
tflearn.init_graph(num_cores=8, gpu_memory_fraction=0.5)
if combination_method == 'concatenate':
net = tflearn.input_data(shape=[None, embeddings.shape[1]*2])
else:
net = tflearn.input_data(shape=[None, embeddings.shape[1]] )
net = tflearn.fully_connected(net, 100, activation='relu')
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', loss='categorical_crossentropy')
m = tflearn.DNN(net)
else:
m = tf.contrib.learn.DNNLinearCombinedClassifier(
model_dir=model_dir,
linear_feature_columns=wide_columns,
dnn_feature_columns=deep_columns,
dnn_hidden_units=[100])
return m
示例12: main
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def main(filename, frames, batch_size, num_classes, input_length):
# Get our data.
X, Y = get_data(input_data_dump, num_frames_per_video, labels, False)
num_classes = len(labels)
size_of_each_frame = X.shape[2]
# Get our network.
net = get_network_wide(num_frames_per_video, size_of_each_frame, num_classes)
# Train the model.
model = tflearn.DNN(net, tensorboard_verbose=0)
try:
model.load('checkpoints/' + model_file)
print("\nModel Exists! Loading it")
print("Model Loaded")
except Exception:
print("\nNo previous checkpoints of %s exist" % (model_file))
print("Exiting..")
sys.exit()
predictions = model.predict(X)
predictions = np.array([np.argmax(pred) for pred in predictions])
Y = np.array([np.argmax(each) for each in Y])
# Writing predictions and gold labels to file
rev_labels = dict(zip(list(labels.values()), list(labels.keys())))
print(rev_labels)
with open("result.txt", "w") as f:
f.write("gold, pred\n")
for a, b in zip(Y, predictions):
f.write("%s %s\n" % (rev_labels[a], rev_labels[b]))
acc = 100 * np.sum(predictions == Y) / len(Y)
print("Accuracy: ", acc)
示例13: main
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def main(input_data_dump, num_frames_per_video, batch_size, labels, model_file):
# Get our data.
X_train, X_test, y_train, y_test = get_data(input_data_dump, num_frames_per_video, labels, True)
num_classes = len(labels)
size_of_each_frame = X_train.shape[2]
# Get our network.
net = get_network_wide(num_frames_per_video, size_of_each_frame, num_classes)
# Train the model.
try:
model = tflearn.DNN(net, tensorboard_verbose=0)
model.load('checkpoints/' + model_file)
print("\nModel already exists! Loading it")
print("Model Loaded")
except Exception:
model = tflearn.DNN(net, tensorboard_verbose=0)
print("\nNo previous checkpoints of %s exist" % (model_file))
model.fit(X_train, y_train, validation_set=(X_test, y_test),
show_metric=True, batch_size=batch_size, snapshot_step=100,
n_epoch=10)
# Save it.
x = input("Do you wanna save the model and overwrite? y or n: ")
if(x.strip().lower() == "y"):
model.save('checkpoints/' + model_file)
示例14: vgg_net_19
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def vgg_net_19(width, height):
network = input_data(shape=[None, height, width, 3], name='input')
network = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
network = dropout(network, keep_prob=0.5)
network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
network = dropout(network, keep_prob=0.5)
network = fully_connected(network, 1000, activation='softmax', weight_decay=5e-4)
opt = Momentum(learning_rate=0, momentum = 0.9)
network = regression(network, optimizer=opt, loss='categorical_crossentropy', name='targets')
model = DNN(network, checkpoint_path='', max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='')
return model
#model of vgg-19 for testing of the activations
#rename the output you want to test, connect it to the next layer and change the output layer at the bottom (model = DNN(...))
#make sure to use the correct test function (depending if your output is a tensor or a vector)
示例15: vgg_net_19_activations
# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import DNN [as 别名]
def vgg_net_19_activations(width, height):
network = input_data(shape=[None, height, width, 3], name='input')
network1 = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network2 = conv_2d(network1, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network2, 2, strides=2)
network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
network = dropout(network, keep_prob=0.5)
network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
network = dropout(network, keep_prob=0.5)
network = fully_connected(network, 1000, activation='softmax', weight_decay=5e-4)
opt = Momentum(learning_rate=0, momentum = 0.9)
network = regression(network, optimizer=opt, loss='categorical_crossentropy', name='targets')
model = DNN(network1, checkpoint_path='', max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='')
return model