当前位置: 首页>>代码示例>>Python>>正文


Python variable_scope.AUTO_REUSE属性代码示例

本文整理汇总了Python中tensorflow.python.ops.variable_scope.AUTO_REUSE属性的典型用法代码示例。如果您正苦于以下问题:Python variable_scope.AUTO_REUSE属性的具体用法?Python variable_scope.AUTO_REUSE怎么用?Python variable_scope.AUTO_REUSE使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在tensorflow.python.ops.variable_scope的用法示例。


在下文中一共展示了variable_scope.AUTO_REUSE属性的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: register_block

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import AUTO_REUSE [as 别名]
def register_block(self, layer_key, fisher_block, reuse=VARIABLE_SCOPE):
        if reuse is VARIABLE_SCOPE:
            reuse = variable_scope.get_variable_scope().reuse

        if reuse is True or (reuse is variable_scope.AUTO_REUSE and
                                     layer_key in self.fisher_blocks):
            result = self.fisher_blocks[layer_key]
            if type(result) != type(fisher_block):  # pylint: disable=unidiomatic-typecheck
                raise ValueError(
                    "Attempted to register FisherBlock of type %s when existing "
                    "FisherBlock has type %s." % (type(fisher_block), type(result)))
            return result
        if reuse is False and layer_key in self.fisher_blocks:
            raise ValueError("FisherBlock for %s is already in LayerCollection." %
                             (layer_key,))

        # Insert fisher_block into self.fisher_blocks.
        if layer_key in self.fisher_blocks:
            raise ValueError("Duplicate registration: {}".format(layer_key))
        # Raise an error if any variable in layer_key has been registered in any
        # other blocks.
        variable_to_block = {
            var: (params, block)
            for (params, block) in self.fisher_blocks.items()
            for var in ensure_sequence(params)
        }
        for variable in ensure_sequence(layer_key):
            if variable in variable_to_block:
                prev_key, prev_block = variable_to_block[variable]
                raise ValueError(
                    "Attempted to register layer_key {} with block {}, but variable {}"
                    " was already registered in key {} with block {}.".format(
                        layer_key, fisher_block, variable, prev_key, prev_block))
        self.fisher_blocks[layer_key] = fisher_block
        return fisher_block 
开发者ID:gd-zhang,项目名称:noisy-K-FAC,代码行数:37,代码来源:layer_collection.py

示例2: _get_or_create_stop_var

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import AUTO_REUSE [as 别名]
def _get_or_create_stop_var():
  with tf.compat.v1.variable_scope(
      name_or_scope='signal_early_stopping',
      values=[],
      reuse=tf.compat.v1.AUTO_REUSE):
    return tf.compat.v1.get_variable(
        name='STOP',
        shape=[],
        dtype=tf.dtypes.bool,
        initializer=tf.compat.v1.initializers.constant(False),
        collections=[tf.compat.v1.GraphKeys.GLOBAL_VARIABLES],
        trainable=False) 
开发者ID:tensorflow,项目名称:estimator,代码行数:14,代码来源:early_stopping.py

示例3: _get_or_create_stop_var_with_aggregation

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import AUTO_REUSE [as 别名]
def _get_or_create_stop_var_with_aggregation(self):
    with variable_scope.variable_scope(
        name_or_scope='signal_early_stopping',
        values=[],
        reuse=variable_scope.AUTO_REUSE):
      return variable_scope.get_variable(
          name='STOP',
          shape=[],
          dtype=tf.dtypes.int32,
          initializer=init_ops.constant_initializer(0),
          collections=[ops.GraphKeys.GLOBAL_VARIABLES],
          synchronization=variable_scope.VariableSynchronization.ON_WRITE,
          aggregation=variable_scope.VariableAggregation.SUM,
          trainable=False) 
开发者ID:tensorflow,项目名称:estimator,代码行数:16,代码来源:early_stopping.py

示例4: _create_or_get_iterations_per_loop

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import AUTO_REUSE [as 别名]
def _create_or_get_iterations_per_loop():
  """Creates or gets the iterations_per_loop variable.

  In TPUEstimator, the user provided computation, the model_fn, is wrapped
  inside a tf.while_loop for peak performance. The iterations of the loop are
  specified by this variable, which adjusts its value on the CPU after each TPU
  program execution and before the next TPU execution.

  The purpose of using a variable, rather then a constant, is to allow
  TPUEstimator adapt the TPU training iterations according to the final steps
  specified by users. For example, if the user sets the iterations_per_loop as 4
  in TPUConfig and steps as 10 in TPUEstimator.train(), the iterations_per_loop
  variable will have the following value before each TPU training.

      - 1-th TPU execution: iterations_per_loop = 4
      - 2-th TPU execution: iterations_per_loop = 4
      - 3-th TPU execution: iterations_per_loop = 2

  As model_fn increases the global step once per train_op invocation, the global
  step is 10 after all TPU executions, matching the steps=10 inputs passed in by
  users.

  Returns:
    A TF non-trainable resource variable.

  Raises:
    RuntimeError: If multi iterations_per_loop variables were found.
  """
  graph = ops.get_default_graph()
  collection_name = '{}_{}'.format(_TPU_ESTIMATOR, _ITERATIONS_PER_LOOP_VAR)
  iter_vars = graph.get_collection(collection_name)
  if len(iter_vars) == 1:
    return iter_vars[0]
  elif len(iter_vars) > 1:
    raise RuntimeError('Multiple iterations_per_loop_var in collection.')

  with ops.colocate_with(training_util.get_global_step()):
    with variable_scope.variable_scope(
        _TPU_ESTIMATOR, reuse=variable_scope.AUTO_REUSE):
      return variable_scope.get_variable(
          _ITERATIONS_PER_LOOP_VAR,
          initializer=init_ops.zeros_initializer(),
          shape=[],
          dtype=dtypes.int32,
          trainable=False,
          collections=[collection_name, ops.GraphKeys.LOCAL_VARIABLES],
          use_resource=True) 
开发者ID:ymcui,项目名称:Chinese-XLNet,代码行数:49,代码来源:tpu_estimator.py


注:本文中的tensorflow.python.ops.variable_scope.AUTO_REUSE属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。