本文整理汇总了Python中tensorflow.python.framework.random_seed.DEFAULT_GRAPH_SEED属性的典型用法代码示例。如果您正苦于以下问题:Python random_seed.DEFAULT_GRAPH_SEED属性的具体用法?Python random_seed.DEFAULT_GRAPH_SEED怎么用?Python random_seed.DEFAULT_GRAPH_SEED使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类tensorflow.python.framework.random_seed
的用法示例。
在下文中一共展示了random_seed.DEFAULT_GRAPH_SEED属性的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_det
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def test_det(self):
self._skip_if_tests_to_skip_contains("det")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
if dtype.is_complex:
self.skipTest(
"tf.matrix_determinant does not work with complex, so this "
"test is being skipped.")
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
op_det = operator.determinant()
if not use_placeholder:
self.assertAllEqual(shape[:-2], op_det.get_shape())
op_det_v, mat_det_v = sess.run(
[op_det, linalg_ops.matrix_determinant(mat)],
feed_dict=feed_dict)
self.assertAC(op_det_v, mat_det_v)
示例2: test_log_abs_det
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def test_log_abs_det(self):
self._skip_if_tests_to_skip_contains("log_abs_det")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
if dtype.is_complex:
self.skipTest(
"tf.matrix_determinant does not work with complex, so this "
"test is being skipped.")
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
op_log_abs_det = operator.log_abs_determinant()
mat_log_abs_det = math_ops.log(
math_ops.abs(linalg_ops.matrix_determinant(mat)))
if not use_placeholder:
self.assertAllEqual(shape[:-2], op_log_abs_det.get_shape())
op_log_abs_det_v, mat_log_abs_det_v = sess.run(
[op_log_abs_det, mat_log_abs_det],
feed_dict=feed_dict)
self.assertAC(op_log_abs_det_v, mat_log_abs_det_v)
示例3: test_add_to_tensor
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def test_add_to_tensor(self):
self._skip_if_tests_to_skip_contains("add_to_tensor")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
op_plus_2mat = operator.add_to_tensor(2 * mat)
if not use_placeholder:
self.assertAllEqual(shape, op_plus_2mat.get_shape())
op_plus_2mat_v, mat_v = sess.run([op_plus_2mat, mat],
feed_dict=feed_dict)
self.assertAC(op_plus_2mat_v, 3 * mat_v)
示例4: test_diag_part
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def test_diag_part(self):
self._skip_if_tests_to_skip_contains("diag_part")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
op_diag_part = operator.diag_part()
mat_diag_part = array_ops.matrix_diag_part(mat)
if not use_placeholder:
self.assertAllEqual(
mat_diag_part.get_shape(), op_diag_part.get_shape())
op_diag_part_, mat_diag_part_ = sess.run(
[op_diag_part, mat_diag_part], feed_dict=feed_dict)
self.assertAC(op_diag_part_, mat_diag_part_)
示例5: test_det
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def test_det(self):
self._maybe_skip("det")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
if dtype.is_complex:
self.skipTest(
"tf.matrix_determinant does not work with complex, so this "
"test is being skipped.")
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
op_det = operator.determinant()
if not use_placeholder:
self.assertAllEqual(shape[:-2], op_det.get_shape())
op_det_v, mat_det_v = sess.run(
[op_det, linalg_ops.matrix_determinant(mat)],
feed_dict=feed_dict)
self.assertAC(op_det_v, mat_det_v)
示例6: test_apply
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def test_apply(self):
self._maybe_skip("apply")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
for adjoint in False, True:
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
x = self._make_x(operator, adjoint=adjoint)
op_apply = operator.apply(x, adjoint=adjoint)
mat_apply = math_ops.matmul(mat, x, adjoint_a=adjoint)
if not use_placeholder:
self.assertAllEqual(op_apply.get_shape(), mat_apply.get_shape())
op_apply_v, mat_apply_v = sess.run([op_apply, mat_apply],
feed_dict=feed_dict)
self.assertAC(op_apply_v, mat_apply_v)
示例7: test_solve
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def test_solve(self):
self._maybe_skip("solve")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
for adjoint in False, True:
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
rhs = self._make_rhs(operator, adjoint=adjoint)
op_solve = operator.solve(rhs, adjoint=adjoint)
mat_solve = linalg_ops.matrix_solve(mat, rhs, adjoint=adjoint)
if not use_placeholder:
self.assertAllEqual(op_solve.get_shape(), mat_solve.get_shape())
op_solve_v, mat_solve_v = sess.run([op_solve, mat_solve],
feed_dict=feed_dict)
self.assertAC(op_solve_v, mat_solve_v)
示例8: testRandomSeed
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def testRandomSeed(self):
test_cases = [
# Each test case is a tuple with input to get_seed:
# (input_graph_seed, input_op_seed)
# and output from get_seed:
# (output_graph_seed, output_op_seed)
((None, None), (None, None)),
((None, 1), (random_seed.DEFAULT_GRAPH_SEED, 1)),
((1, None), (1, 0)), # 0 will be the default_graph._lastid.
((1, 1), (1, 1)),
]
for tc in test_cases:
tinput, toutput = tc[0], tc[1]
random_seed.set_random_seed(tinput[0])
g_seed, op_seed = random_seed.get_seed(tinput[1])
msg = 'test_case = {0}, got {1}, want {2}'.format(tinput,
(g_seed, op_seed),
toutput)
self.assertEqual((g_seed, op_seed), toutput, msg=msg)
random_seed.set_random_seed(None)
示例9: setUp
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def setUp(self):
self._ClearCachedSession()
random.seed(random_seed.DEFAULT_GRAPH_SEED)
np.random.seed(random_seed.DEFAULT_GRAPH_SEED)
ops.reset_default_graph()
ops.get_default_graph().seed = random_seed.DEFAULT_GRAPH_SEED
示例10: test_to_dense
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def test_to_dense(self):
self._skip_if_tests_to_skip_contains("to_dense")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
op_dense = operator.to_dense()
if not use_placeholder:
self.assertAllEqual(shape, op_dense.get_shape())
op_dense_v, mat_v = sess.run([op_dense, mat], feed_dict=feed_dict)
self.assertAC(op_dense_v, mat_v)
示例11: test_matmul
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def test_matmul(self):
self._skip_if_tests_to_skip_contains("matmul")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
for adjoint in False, True:
for adjoint_arg in False, True:
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
x = self._make_x(operator, adjoint=adjoint)
# If adjoint_arg, compute A X^H^H = A X.
if adjoint_arg:
op_matmul = operator.matmul(
linear_operator_util.matrix_adjoint(x),
adjoint=adjoint, adjoint_arg=adjoint_arg)
else:
op_matmul = operator.matmul(x, adjoint=adjoint)
mat_matmul = math_ops.matmul(mat, x, adjoint_a=adjoint)
if not use_placeholder:
self.assertAllEqual(
op_matmul.get_shape(), mat_matmul.get_shape())
op_matmul_v, mat_matmul_v = sess.run(
[op_matmul, mat_matmul], feed_dict=feed_dict)
self.assertAC(op_matmul_v, mat_matmul_v)
示例12: test_to_dense
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def test_to_dense(self):
self._maybe_skip("to_dense")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
op_dense = operator.to_dense()
if not use_placeholder:
self.assertAllEqual(shape, op_dense.get_shape())
op_dense_v, mat_v = sess.run([op_dense, mat], feed_dict=feed_dict)
self.assertAC(op_dense_v, mat_v)
示例13: setUp
# 需要导入模块: from tensorflow.python.framework import random_seed [as 别名]
# 或者: from tensorflow.python.framework.random_seed import DEFAULT_GRAPH_SEED [as 别名]
def setUp(self):
self._ClearCachedSession()
random.seed(random_seed.DEFAULT_GRAPH_SEED)
np.random.seed(random_seed.DEFAULT_GRAPH_SEED)
# Note: The following line is necessary because some test methods may error
# out from within nested graph contexts (e.g., via assertRaises and
# assertRaisesRegexp), which may leave ops._default_graph_stack non-empty
# under certain versions of Python. That would cause
# ops.reset_default_graph() to throw an exception if the stack were not
# cleared first.
ops._default_graph_stack.reset() # pylint: disable=protected-access
ops.reset_default_graph()
ops.get_default_graph().seed = random_seed.DEFAULT_GRAPH_SEED
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:15,代码来源:test_util.py