本文整理汇总了Python中tensorflow.compat.v1.AUTO_REUSE属性的典型用法代码示例。如果您正苦于以下问题:Python v1.AUTO_REUSE属性的具体用法?Python v1.AUTO_REUSE怎么用?Python v1.AUTO_REUSE使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.AUTO_REUSE属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: fprop
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def fprop(self, x):
if x.name in self._logits_dict:
return self._logits_dict[x.name]
x = tf.map_fn(tf.image.per_image_standardization, x)
self._additional_features['inputs'] = x
if self._scope is None:
scope = tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE)
else:
scope = tf.variable_scope(self._scope, reuse=tf.AUTO_REUSE)
with scope:
logits = self._model_fn(
self._additional_features,
None,
'attack',
params=self._params,
config=self._config)
self._logits_dict[x.name] = logits
return {model.Model.O_LOGITS: tf.reshape(logits, [-1, logits.shape[-1]])}
示例2: actnorm_3d
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def actnorm_3d(name, x, logscale_factor=3.):
"""Applies actnorm to each time-step independently.
There are a total of 2*n_channels*n_steps parameters learnt.
Args:
name: variable scope.
x: 5-D Tensor, (NTHWC)
logscale_factor: Increases the learning rate of the scale by
logscale_factor.
Returns:
x: 5-D Tensor, (NTHWC) with the per-timestep, per-channel normalization.
"""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
x = tf.unstack(x, axis=1)
x_normed = []
for ind, x_step in enumerate(x):
x_step, _ = actnorm("actnorm_%d" % ind, x_step,
logscale_factor=logscale_factor)
x_normed.append(x_step)
return tf.stack(x_normed, axis=1), None
示例3: single_conv_dist
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def single_conv_dist(name, x, output_channels=None):
"""A 3x3 convolution mapping x to a standard normal distribution at init.
Args:
name: variable scope.
x: 4-D Tensor.
output_channels: number of channels of the mean and std.
"""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
x_shape = common_layers.shape_list(x)
if output_channels is None:
output_channels = x_shape[-1]
mean_log_scale = conv("conv2d", x, output_channels=2*output_channels,
conv_init="zeros", apply_actnorm=False)
mean = mean_log_scale[:, :, :, 0::2]
log_scale = mean_log_scale[:, :, :, 1::2]
return tf.distributions.Normal(mean, tf.exp(log_scale))
示例4: revnet
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def revnet(name, x, hparams, reverse=True):
"""'hparams.depth' steps of generative flow.
Args:
name: variable scope for the revnet block.
x: 4-D Tensor, shape=(NHWC).
hparams: HParams.
reverse: bool, forward or backward pass.
Returns:
x: 4-D Tensor, shape=(NHWC).
objective: float.
"""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
steps = np.arange(hparams.depth)
if reverse:
steps = steps[::-1]
objective = 0.0
for step in steps:
x, curr_obj = revnet_step(
"revnet_step_%d" % step, x, hparams, reverse=reverse)
objective += curr_obj
return x, objective
示例5: scale_gaussian_prior
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def scale_gaussian_prior(name, z, logscale_factor=3.0, trainable=True):
"""Returns N(s^i * z^i, std^i) where s^i and std^i are pre-component.
s^i is a learnable parameter with identity initialization.
std^i is optionally learnable with identity initialization.
Args:
name: variable scope.
z: input_tensor
logscale_factor: equivalent to scaling up the learning_rate by a factor
of logscale_factor.
trainable: Whether or not std^i is learnt.
"""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
z_shape = common_layers.shape_list(z)
latent_multiplier = tf.get_variable(
"latent_multiplier", shape=z_shape, dtype=tf.float32,
initializer=tf.ones_initializer())
log_scale = tf.get_variable(
"log_scale_latent", shape=z_shape, dtype=tf.float32,
initializer=tf.zeros_initializer(), trainable=trainable)
log_scale = log_scale * logscale_factor
return tfp.distributions.Normal(
loc=latent_multiplier * z, scale=tf.exp(log_scale))
示例6: residual_shuffle_network
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def residual_shuffle_network(inputs, hparams):
"""Residual Shuffle-Exchange network with weight sharing.
Args:
inputs: inputs to the Shuffle-Exchange network. Should be in length of power
of 2.
hparams: Model configuration
Returns:
tf.Tensor: Outputs of the Shuffle-Exchange last layer
"""
input_shape = tf.shape(inputs)
n_bits = tf.log(tf.cast(input_shape[1] - 1, tf.float32)) / tf.log(2.0)
n_bits = tf.cast(n_bits, tf.int32) + 1
block_out = inputs
for k in range(hparams.num_hidden_layers):
with tf.variable_scope("benes_block_" + str(k), reuse=tf.AUTO_REUSE):
forward_output = forward_part(block_out, hparams, n_bits)
block_out = reverse_part(forward_output, hparams, n_bits)
return RSU("last_layer", hparams.dropout, hparams.mode)(block_out)
示例7: iterative_encoder_decoder
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def iterative_encoder_decoder(encoder_input,
encoder_self_attention_bias,
encoder_decoder_attention_bias,
query,
hparams):
"""Iterative encoder decoder."""
for _ in range(hparams.num_rec_steps):
with tf.variable_scope("step", reuse=tf.AUTO_REUSE):
encoder_output = image_question_encoder(
encoder_input,
encoder_self_attention_bias,
hparams,
query)
decoder_output = decoder(
query,
encoder_output,
None,
encoder_decoder_attention_bias,
hparams)
encoder_input = encoder_output
query = decoder_output
return decoder_output
示例8: transformer_decoder_layers
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def transformer_decoder_layers(name,
n_layers,
decoder_input,
**kwargs):
"""A transformation block composed of transformer decoder layers."""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
hparams = kwargs["hparams"]
outputs = decoder_input
with tf.variable_scope("decoder", reuse=tf.AUTO_REUSE):
for layer_idx in range(n_layers):
outputs = transformer_decoder_layer(
decoder_input=outputs,
layer_idx=layer_idx,
**kwargs)
outputs = common_layers.layer_preprocess(outputs, hparams)
return outputs
示例9: posterior
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def posterior(
name, hparams, targets, targets_mask, decoder_self_attention_bias,
**kwargs):
"""Compute mu and sigma for diagonal normal posterior q(z|x,y)."""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
decoder_input = drop_2d(targets, hparams.mode, hparams.posterior_2d_dropout)
decoder_input = common_attention.add_timing_signal_1d(decoder_input)
decoder_input = tf.nn.dropout(decoder_input,
rate=hparams.layer_prepostprocess_dropout)
decoder_output = transformer_decoder_layers(
"block",
n_layers=hparams.n_posterior_layers,
decoder_input=decoder_input,
hparams=hparams,
decoder_self_attention_bias=decoder_self_attention_bias,
**kwargs)
decoder_output = gops.dense_weightnorm(
"h2o_out", decoder_output, hparams.latent_size * 2, targets_mask,
init_scale=0.0, init=False)
return decoder_output
示例10: decoder
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def decoder(name, latents, hparams, decoder_self_attention_bias, **kwargs):
"""Compute final hidden states for p(y|z,x)."""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
decoder_input = drop_2d(latents, hparams.mode, hparams.decoder_2d_dropout)
if hparams.pos_attn:
decoder_input = gops.positional_attention(
"pos_attn", decoder_input, decoder_self_attention_bias, hparams)
else:
decoder_input = common_attention.add_timing_signal_1d(decoder_input)
if common_layers.shape_list(latents)[-1] != hparams.hidden_size:
decoder_input = gops.dense("lat2hid", latents, hparams.hidden_size)
decoder_output = transformer_decoder_layers(
"block",
n_layers=hparams.n_decoder_layers,
decoder_input=decoder_input,
hparams=hparams,
decoder_self_attention_bias=decoder_self_attention_bias,
**kwargs)
batch_size, targets_length = common_layers.shape_list(decoder_output)[:2]
decoder_output = tf.reshape(
decoder_output, [batch_size, targets_length, 1, hparams.hidden_size])
# Expand since t2t expects 4d tensors.
return decoder_output
示例11: flow_step_glow
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def flow_step_glow(name, x, x_mask, split_dims, inverse, init, dtype, **kwargs):
"""One step of flow."""
conv_fn = multihead_invertible_1x1_conv_np
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
reversible_ops = []
for _, split_dim in enumerate(split_dims):
identity_first = True
reversible_ops += [functools.partial(actnorm, name="actnorm", init=init)]
if split_dim in "ca":
multihead_split = "a" if split_dim == "c" else "c"
reversible_ops += [functools.partial(
conv_fn, name="conv_{}".format(multihead_split),
multihead_split=multihead_split, dtype=dtype)]
reversible_ops += [functools.partial(
coupling, name="coupling_{}".format(split_dim),
split_dim=split_dim, identity_first=identity_first, init=init,
**kwargs)]
if inverse:
reversible_ops = reversible_ops[::-1]
logabsdets = tf.constant(0.0, dtype=dtype)
for reversible_op in reversible_ops:
x, logabsdet = reversible_op(x=x, x_mask=x_mask, inverse=inverse)
logabsdets += logabsdet
return x, logabsdets
示例12: flow_level
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def flow_level(
name, x, x_mask, depth, split_dims, prior, inverse, init, dtype, **kwargs):
"""One level of flow."""
flow_step_fn = flow_step_glow
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
reversible_ops = []
for step in np.arange(depth):
reversible_ops += [functools.partial(
flow_step_fn, name="{}_step".format(step), split_dims=split_dims,
init=init, dtype=dtype, **kwargs)]
if prior:
reversible_ops += [functools.partial(
coupling, name="{}_prior".format(depth), split_dim="c",
identity_first=True, init=init, **kwargs)]
if inverse:
reversible_ops = reversible_ops[::-1]
logabsdets = tf.constant(0.0, dtype=dtype)
for reversible_op in reversible_ops:
x, logabsdet = reversible_op(x=x, x_mask=x_mask, inverse=inverse)
logabsdets += logabsdet
return x, logabsdets
示例13: video_bitwise_targets_bottom
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def video_bitwise_targets_bottom(x, model_hparams, vocab_size):
"""Bottom transformation for embedding target video bitwise."""
pixel_embedding_size = 64
inputs = x
with tf.variable_scope("video_modality_bitwise", reuse=tf.AUTO_REUSE):
common_layers.summarize_video(inputs, "targets_bottom")
# Embed bitwise.
assert vocab_size == 256
embedded = discretization.int_to_bit_embed(inputs, 8,
pixel_embedding_size)
# Transpose and project.
transposed = common_layers.time_to_channels(embedded)
return tf.layers.dense(
transposed,
model_hparams.hidden_size,
name="merge_pixel_embedded_frames")
示例14: dense_weightnorm
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def dense_weightnorm(
name, x, n_out, x_mask, init_scale, init, dtype=tf.float32):
"""Dense layer with weight normalization."""
n_in = common_layers.shape_list(x)[2]
eps = tf.keras.backend.epsilon()
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
v = tf.get_variable(
"v", [n_in, n_out], dtype,
initializer=tf.random_normal_initializer(0, 0.05), trainable=True)
v = v / tf.norm(v, axis=0, keepdims=True)
t = tf.matmul(x, v) # [B, L, n_out]
mean, var = moments_over_bl(t, x_mask)
g_init = init_scale / (tf.sqrt(var) + eps)
g = get_variable_ddi(
"g", [n_out], g_init, init,
initializer=tf.zeros_initializer, dtype=dtype, trainable=True)
b = get_variable_ddi(
"b", [n_out], -mean*g_init, init,
initializer=tf.zeros_initializer, dtype=dtype, trainable=True)
w = g * v
y = tf.matmul(x, w) + b
tf.summary.histogram("_g", g)
return y
示例15: post_attention
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import AUTO_REUSE [as 别名]
def post_attention(self, token, x):
"""Called after self-attention. The memory can be updated here.
Args:
token: Data returned by pre_attention, which can be used to carry over
state related to the current memory operation.
x: a Tensor of data after self-attention and feed-forward
Returns:
a (possibly modified) version of the input x
"""
with tf.variable_scope(self.name + "/post_attention", reuse=tf.AUTO_REUSE):
depth = common_layers.shape_list(x)[-1]
actual_batch_size = common_layers.shape_list(x)[0]
memory_output = tf.gather(token["retrieved_mem"],
tf.range(actual_batch_size))
output = tf.add(tf.layers.dense(x, depth, use_bias=False),
tf.layers.dense(memory_output, depth))
with tf.control_dependencies([output]):
with tf.control_dependencies([
self.write(token["x"], token["access_logits"])]):
return tf.identity(output)