本文整理汇总了Python中talib.EMA属性的典型用法代码示例。如果您正苦于以下问题:Python talib.EMA属性的具体用法?Python talib.EMA怎么用?Python talib.EMA使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类talib
的用法示例。
在下文中一共展示了talib.EMA属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ema
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def ema(dataframe, period, field='close'):
import talib.abstract as ta
return ta.EMA(dataframe, timeperiod=period, price=field)
# HT_TRENDLINE Hilbert Transform - Instantaneous Trendline
# KAMA Kaufman Adaptive Moving Average
# MA Moving average
# MAMA MESA Adaptive Moving Average
# MAVP Moving average with variable period
# MIDPOINT MidPoint over period
# MIDPRICE Midpoint Price over period
# SAR Parabolic SAR
# SAREXT Parabolic SAR - Extended
# SMA Simple Moving Average
示例2: _getAtrExtreme
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def _getAtrExtreme(cls, highs, lows, closes, atrPeriod=14, slowPeriod=30, fastPeriod=3):
"""
获取TTI ATR Exterme通道, which is based on 《Volatility-Based Technical Analysis》
TTI is 'Trading The Invisible'
@return: fasts, slows
"""
# talib 的源码,它的 ATR 不是 N 日简单平均,而是类似 EMA 的方法计算的指数平均
atr = talib.ATR(highs, lows, closes, timeperiod=atrPeriod)
highsMean = talib.EMA(highs, 5)
lowsMean = talib.EMA(lows, 5)
closesMean = talib.EMA(closes, 5)
atrExtremes = np.where(closes > closesMean,
((highs - highsMean)/closes * 100) * (atr/closes * 100),
((lows - lowsMean)/closes * 100) * (atr/closes * 100)
)
fasts = talib.MA(atrExtremes, fastPeriod)
slows = talib.EMA(atrExtremes, slowPeriod)
return fasts, slows, np.std(atrExtremes[-slowPeriod:])
示例3: stc
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def stc(dataframe, fast=23, slow=50, length=10):
# First, the 23-period and the 50-period EMA and the MACD values are calculated:
# EMA1 = EMA (Close, Short Length);
# EMA2 = EMA (Close, Long Length);
# MACD = EMA1 – EMA2.
# Second, the 10-period Stochastic from the MACD values is calculated:
# %K (MACD) = %KV (MACD, 10);
# %D (MACD) = %DV (MACD, 10);
# Schaff = 100 x (MACD – %K (MACD)) / (%D (MACD) – %K (MACD))
import talib.abstract as ta
MACD = ta.EMA(dataframe, timeperiod=fast) - ta.EMA(dataframe, timeperiod=slow)
STOK = ((MACD - MACD.rolling(window=length).min()) / (
MACD.rolling(window=length).max() - MACD.rolling(window=length).min())) * 100
STOD = STOK.rolling(window=length).mean()
dataframe['stc'] = 100 * (MACD - (STOK * MACD)) / ((STOD * MACD) - (STOK * MACD))
return dataframe['stc']
示例4: momentum
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def momentum(dataframe, field='close', period=9):
from pyti.momentum import momentum as m
return m(dataframe[field], period)
# PLUS_DI Plus Directional Indicator
# PLUS_DM Plus Directional Movement
# PPO Percentage Price Oscillator
# ROC Rate of change : ((price/prevPrice)-1)*100
# ROCP Rate of change Percentage: (price-prevPrice)/prevPrice
# ROCR Rate of change ratio: (price/prevPrice)
# ROCR100 Rate of change ratio 100 scale: (price/prevPrice)*100
# RSI Relative Strength Index
# STOCH Stochastic
# STOCHF Stochastic Fast
# STOCHRSI Stochastic Relative Strength Index
# TRIX 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
# ULTOSC Ultimate Oscillator
示例5: vwmacd
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def vwmacd(candles: np.ndarray, fastperiod=12, slowperiod=26, signalperiod=9, sequential=False) -> VWMACD:
"""
VWMACD - Volume Weighted Moving Average Convergence/Divergence
:param candles: np.ndarray
:param fastperiod: int - default: 12
:param slow_period: int - default: 26
:param signal_period: int - default: 9
:param sequential: bool - default: False
:return: VWMACD(macd, signal, hist)
"""
if not sequential and len(candles) > 240:
candles = candles[-240:]
vwma_slow = talib.SMA(candles[:, 2] * candles[:, 5], slowperiod) / talib.SMA(candles[:, 5], slowperiod)
vwma_fast = talib.SMA(candles[:, 2] * candles[:, 5], fastperiod) / talib.SMA(candles[:, 5], fastperiod)
vwmacd = vwma_fast - vwma_slow
signal = talib.EMA(vwmacd, signalperiod)
hist = vwmacd - signal
if sequential:
return VWMACD(vwmacd, signal, hist)
else:
return VWMACD(vwmacd[-1], signal[-1], hist[-1])
示例6: ema
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def ema(candles: np.ndarray, period=5, source_type="close", sequential=False) -> Union[float, np.ndarray]:
"""
EMA - Exponential Moving Average
:param candles: np.ndarray
:param period: int - default: 5
:param source_type: str - default: "close"
:param sequential: bool - default=False
:return: float | np.ndarray
"""
if not sequential and len(candles) > 240:
candles = candles[-240:]
source = get_candle_source(candles, source_type=source_type)
res = talib.EMA(source, timeperiod=period)
return res if sequential else res[-1]
示例7: tsi
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def tsi(candles: np.ndarray, long_period=25, short_period=13, source_type="close", sequential=False) -> Union[
float, np.ndarray]:
"""
True strength index (TSI)
:param candles: np.ndarray
:param long_period: int - default: 25
:param short_period: int - default: 13
:param source_type: str - default: "close"
:param sequential: bool - default=False
:return: float | np.ndarray
"""
if not sequential and len(candles) > 240:
candles = candles[-240:]
source = get_candle_source(candles, source_type=source_type)
r = 100 * (talib.EMA((talib.EMA(talib.MOM(source, 1), long_period)), short_period)) / (
talib.EMA((talib.EMA(np.absolute(talib.MOM(source, 1)), long_period)), short_period))
return r if sequential else r[-1]
示例8: _calc_ma_from_ta
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def _calc_ma_from_ta(prices, time_period=10, from_calc=EMACalcType.E_MA_MA):
"""
使用talib计算ma,即透传talib.MA or talib.EMA计算结果
:param prices: 收盘价格序列,pd.Series或者np.array
:param time_period: 移动平均的N值,int
:param from_calc: EMACalcType enum对象,移动移动平均使用的方法
"""
import talib
if isinstance(prices, pd.Series):
prices = prices.values
if from_calc == EMACalcType.E_MA_MA:
ma = talib.MA(prices, timeperiod=time_period)
else:
ma = talib.EMA(prices, timeperiod=time_period)
return ma
示例9: EMA
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def EMA(self, period: int, bars: list):
"""
Exponential moving average of previous n bars close price.
EMA = price(t) * k + EMA(y) * ( 1 − k )
where:
t = today (current bar for any period)
y = yesterday (previous bar close price)
N = number of bars (period)
k = 2 / (N + 1) (weight factor)
"""
self.check_bars_type(bars)
ema = ta.EMA(bars['close'], timeperiod=period)
return ema
示例10: MACD
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def MACD(self, name, bars: list):
"""
Return MACD for given time series. Bars list must be 26 bars
in length (last 26 bars for period).
MACD = EMA(12) - EMA(26)
Note we only use the MACD, not signal or histogram.
"""
self.check_bars_type(bars)
macd, signal, hist = ta.MACD(
bars['close'], fastperiod=12, slowperiod=26, signalperiod=9)
return macd
示例11: getRuntimeEma
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def getRuntimeEma(self, ema_num):
"""
实时计算EMA得值
:param ema_num:第几条均线, 1,对应inputEma1Len,,,,
:return:
"""
if ema_num not in [1, 2, 3]:
return None
ema_len = 1
if ema_num == 1 and self.inputEma1Len > 0:
ema_len = self.inputEma1Len
elif ema_num == 2 and self.inputEma2Len > 0:
ema_len = self.inputEma2Len
elif ema_num == 3 and self.inputEma3Len > 0:
ema_len = self.inputEma3Len
else:
return None
ema_data_len = min(ema_len*2, ema_len + 20)
# 1、lineBar满足长度才执行计算
if len(self.lineBar) < ema_data_len:
self.debugCtaLog(u'数据未充分,当前Bar数据数量:{0},计算实时EMA需要:{1}'.
format(len(self.lineBar), ema_data_len))
return
listClose = [x.close for x in self.lineBar[-ema_data_len - 1:]]
rtEma = ta.EMA(np.array(listClose, dtype=float), ema_len)[-1]
rtEma = round(float(rtEma), self.round_n)
return rtEma
示例12: __recountYB
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def __recountYB(self):
"""某种趋势线"""
if not self.inputYb:
return
if self.inputYbLen <1:
return
if self.inputYbRef < 1:
self.debugCtaLog(u'参数 self.inputYbRef:{}不能低于1'.format(self.inputYbRef))
return
# 1、lineBar满足长度才执行计算
if len(self.lineBar) < 4 * self.inputYbLen:
self.debugCtaLog(u'数据未充分,当前Bar数据数量:{0},计算YB 需要:{1}'.
format(len(self.lineBar), 4 * self.inputYbLen))
return
emaLen = self.inputYbLen
# 3、获取前InputN周期(不包含当前周期)的K线
if self.mode == self.TICK_MODE:
list_mid3 = [x.mid3 for x in self.lineBar[-emaLen*4 - 1:-1]]
else:
list_mid3 = [x.mid3 for x in self.lineBar[-emaLen*4:]]
bar_mid3_ema10 = ta.EMA(np.array(list_mid3, dtype=float), emaLen)[-1]
bar_mid3_ema10 = round(float(bar_mid3_ema10), self.round_n)
if len(self.lineYb) > emaLen*4:
del self.lineYb[0]
self.lineYb.append(bar_mid3_ema10)
if len(self.lineYb) < self.inputYbRef + 1:
return
if self.lineYb[-1] > self.lineYb[-1 - self.inputYbRef]:
self.yb_count = self.yb_count + 1 if self.yb_count >= 0 else 1
else:
self.yb_count = self.yb_count - 1 if self.yb_count <= 0 else -1
示例13: getRuningYb
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def getRuningYb(self):
"""
获取未完结的bar计算出来的YB值
:return: None,空值;float,计算值
"""
if not self.inputYb :
return None
if self.inputYbLen < 1:
return None
if self.inputYbRef < 1:
self.debugCtaLog(u'参数 self.inputYbRef:{}不能低于1'.format(self.inputYbRef))
return None
# 1、lineBar满足长度才执行计算
if len(self.lineBar) < 4 * self.inputYbLen:
self.debugCtaLog(u'数据未充分,当前Bar数据数量:{0},计算YB 需要:{1}'.
format(len(self.lineBar), 4 * self.inputYbLen))
return None
emaLen = self.inputYbLen
# 3、获取前InputN周期(包含当前周期)的K线
list_mid3 = [x.mid3 for x in self.lineBar[-emaLen*4:-1]]
last_bar_mid3 = (self.lineBar[-1].close + self.lineBar[-1].high + self.lineBar[-1].low)/3
list_mid3.append(last_bar_mid3)
bar_mid3_ema10 = ta.EMA(np.array(list_mid3, dtype=float), emaLen)[-1]
bar_mid3_ema10 = round(float(bar_mid3_ema10), self.round_n)
return bar_mid3_ema10
# ----------------------------------------------------------------------
示例14: calculate_obv
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def calculate_obv(self, period_name, closing_prices, volumes):
obv = talib.OBV(closing_prices, volumes)
obv_ema = talib.EMA(obv, timeperiod=3)
self.current_indicators[period_name]['obv_ema'] = obv_ema[-1]
self.current_indicators[period_name]['obv'] = obv[-1]
示例15: Volume_HMA
# 需要导入模块: import talib [as 别名]
# 或者: from talib import EMA [as 别名]
def Volume_HMA(klines, period=5):
"""
交易量加权船型移动平均线 HMA,方向指示性类似于 Moving Average ADX,但它们通过不同的指标实现。
Hull Moving Average with Volume weighted, diretions similar like ADX_MA
Source: https://www.tradingview.com/script/XTViDINu-VHMA/
Translator: 阿财(Rgveda@github)(4910163#qq.com)
Parameters
----------
klines : (N,) array_like
传入 OHLC Kline 序列。
The OHLC Kline.
period : int or None, optional
DI 统计周期 默认值为 10
DI Length period. Default value is 10.
Returns
-------
vhma, Trend : ndarray
vhma 指标和 Trend 趋势指示方向 (-1/-2, 0, 1/2) 分别代表 (下跌, 无明显趋势, 上涨)
the vhma indicator and thread directions sequence. (-1/-2, 0, 1/2) means for (Neagtive, No Trend, Positive)
"""
src1 = talib.EMA(klines.close * klines.volume, period) / talib.EMA(klines.volume, period)
vhma = TA_HMA(src1, period)
vhma_s = pd.Series(vhma)
lineDirection = np.where((vhma > vhma_s.shift(1).values), 1, -1)
hu = np.where((vhma > vhma_s.shift(2).values), 1, -1)
return vhma, lineDirection + hu