本文整理汇总了Python中talib.ADXR属性的典型用法代码示例。如果您正苦于以下问题:Python talib.ADXR属性的具体用法?Python talib.ADXR怎么用?Python talib.ADXR使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类talib
的用法示例。
在下文中一共展示了talib.ADXR属性的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: add_ADXR
# 需要导入模块: import talib [as 别名]
# 或者: from talib import ADXR [as 别名]
def add_ADXR(self, timeperiod=14,
type='line', color='secondary', **kwargs):
"""Average Directional Movement Index Rating."""
if not (self.has_high and self.has_low and self.has_close):
raise Exception()
utils.kwargs_check(kwargs, VALID_TA_KWARGS)
if 'kind' in kwargs:
type = kwargs['kind']
name = 'ADXR({})'.format(str(timeperiod))
self.sec[name] = dict(type=type, color=color)
self.ind[name] = talib.ADXR(self.df[self.hi].values,
self.df[self.lo].values,
self.df[self.cl].values,
timeperiod)
示例2: adxr
# 需要导入模块: import talib [as 别名]
# 或者: from talib import ADXR [as 别名]
def adxr(candles: np.ndarray, period=14, sequential=False) -> Union[float, np.ndarray]:
"""
ADXR - Average Directional Movement Index Rating
:param candles: np.ndarray
:param period: int - default=14
:param sequential: bool - default=False
:return: float | np.ndarray
"""
if not sequential and len(candles) > 240:
candles = candles[-240:]
res = talib.ADXR(candles[:, 3], candles[:, 4], candles[:, 2], timeperiod=period)
if sequential:
return res
else:
return None if np.isnan(res[-1]) else res[-1]
示例3: TA_ADXR
# 需要导入模块: import talib [as 别名]
# 或者: from talib import ADXR [as 别名]
def TA_ADXR(high, low, close, timeperiod=14) -> np.ndarray:
"""
名称:平均趋向指数的趋向指数
简介:使用ADXR指标,指标判断ADX趋势。
ADXR - Average Directional Movement Index Rating
"""
real = talib.ADXR(high, low, close, timeperiod=timeperiod)
return np.c_[real]
示例4: ADXR
# 需要导入模块: import talib [as 别名]
# 或者: from talib import ADXR [as 别名]
def ADXR(DataFrame, N=14):
res = talib.ADXR(DataFrame.high.values, DataFrame.low.values, DataFrame.close.values, N)
return pd.DataFrame({'ADXR': res}, index=DataFrame.index)
示例5: adxr
# 需要导入模块: import talib [as 别名]
# 或者: from talib import ADXR [as 别名]
def adxr(self, sym, frequency, period=14):
if not self.kbars_ready(sym, frequency):
return []
highs = self.high(sym, frequency)
lows = self.low(sym, frequency)
closes = self.close(sym, frequency)
return ta.ADXR(highs, lows, closes, timeperiod=period)
示例6: technical_indicators_df
# 需要导入模块: import talib [as 别名]
# 或者: from talib import ADXR [as 别名]
def technical_indicators_df(self, daily_data):
"""
Assemble a dataframe of technical indicator series for a single stock
"""
o = daily_data['Open'].values
c = daily_data['Close'].values
h = daily_data['High'].values
l = daily_data['Low'].values
v = daily_data['Volume'].astype(float).values
# define the technical analysis matrix
# Most data series are normalized by their series' mean
ta = pd.DataFrame()
ta['MA5'] = tb.MA(c, timeperiod=5) / tb.MA(c, timeperiod=5).mean()
ta['MA10'] = tb.MA(c, timeperiod=10) / tb.MA(c, timeperiod=10).mean()
ta['MA20'] = tb.MA(c, timeperiod=20) / tb.MA(c, timeperiod=20).mean()
ta['MA60'] = tb.MA(c, timeperiod=60) / tb.MA(c, timeperiod=60).mean()
ta['MA120'] = tb.MA(c, timeperiod=120) / tb.MA(c, timeperiod=120).mean()
ta['MA5'] = tb.MA(v, timeperiod=5) / tb.MA(v, timeperiod=5).mean()
ta['MA10'] = tb.MA(v, timeperiod=10) / tb.MA(v, timeperiod=10).mean()
ta['MA20'] = tb.MA(v, timeperiod=20) / tb.MA(v, timeperiod=20).mean()
ta['ADX'] = tb.ADX(h, l, c, timeperiod=14) / tb.ADX(h, l, c, timeperiod=14).mean()
ta['ADXR'] = tb.ADXR(h, l, c, timeperiod=14) / tb.ADXR(h, l, c, timeperiod=14).mean()
ta['MACD'] = tb.MACD(c, fastperiod=12, slowperiod=26, signalperiod=9)[0] / \
tb.MACD(c, fastperiod=12, slowperiod=26, signalperiod=9)[0].mean()
ta['RSI'] = tb.RSI(c, timeperiod=14) / tb.RSI(c, timeperiod=14).mean()
ta['BBANDS_U'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[0] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[0].mean()
ta['BBANDS_M'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[1] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[1].mean()
ta['BBANDS_L'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[2] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[2].mean()
ta['AD'] = tb.AD(h, l, c, v) / tb.AD(h, l, c, v).mean()
ta['ATR'] = tb.ATR(h, l, c, timeperiod=14) / tb.ATR(h, l, c, timeperiod=14).mean()
ta['HT_DC'] = tb.HT_DCPERIOD(c) / tb.HT_DCPERIOD(c).mean()
ta["High/Open"] = h / o
ta["Low/Open"] = l / o
ta["Close/Open"] = c / o
self.ta = ta
示例7: before_trading
# 需要导入模块: import talib [as 别名]
# 或者: from talib import ADXR [as 别名]
def before_trading(context):
prices = history_bars(context.s1, context.window, '1d', fields=['high', 'low', 'close', 'open'])
highP = prices['high']
lowP = prices['low']
closeP = prices['close']
openP = prices['open']
context.ADX = ta.ADXR(highP, lowP, closeP, timeperiod=14)
context.Pdi = ta.PLUS_DI(highP, lowP, closeP, timeperiod=14)
context.Ndi = ta.MINUS_DI(highP, lowP, closeP, timeperiod=14)
context.MA_tw = ta.MA(closeP, timeperiod=20)[-5:]
context.MA_fi = ta.MA(closeP, timeperiod=50)[-5:]
context.MA_fork = context.MA_tw > context.MA_fi
context.SAR = ta.SAR(highP, lowP, acceleration=context.acceleration, maximum=0.2)
# context.JQ_selOpen = (context.ADX[-1]>=20) #& (context.ADX[-2]>=20) & (context.ADX[-1]<=30) & (context.ADX[-2]<=30)
context.JW_selOpen = (context.Pdi[-1] <= context.Ndi[-1]) & (context.Pdi[-2] >= context.Ndi[-2])
context.JE_selOpen = (context.MA_fork[-1]) & (context.MA_fork[-2]) & (not context.MA_fork[-3])
context.JR_selOpen = (context.SAR[-1] >= 0.95 * openP[-1]) & (context.SAR[-2] <= 1.05 * closeP[-2])
context.J_selOpen = context.JQ_selOpen & context.JW_selOpen & context.JE_selOpen & context.JR_selOpen
# context.JQ_buyOpen = context.JQ_selOpen
context.JW_buyOpen = (context.Pdi[-1] >= context.Ndi[-1]) & (context.Pdi[-2] <= context.Ndi[-2])
context.JE_buyOpen = (not context.MA_fork[-1]) & (not context.MA_fork[-2]) & (not context.MA_fork[-3])
context.JR_buyOpen = (context.SAR[-2] >= 0.95 * openP[-2]) & (context.SAR[-1] <= 1.05 * closeP[-1])
context.J_buyOpen = context.JQ_buyOpen & context.JW_buyOpen & context.JE_buyOpen & context.JR_buyOpen
# 你选择的期货数据更新将会触发此段逻辑,例如日线或分钟线更新
示例8: ADXR
# 需要导入模块: import talib [as 别名]
# 或者: from talib import ADXR [as 别名]
def ADXR(frame, n=14, high_col='high', low_col='low', close_col='close'):
return _frame_to_series(frame, [high_col, low_col, close_col], talib.ADXR, n)
示例9: ADXR
# 需要导入模块: import talib [as 别名]
# 或者: from talib import ADXR [as 别名]
def ADXR(data, **kwargs):
_check_talib_presence()
_, phigh, plow, pclose, _ = _extract_ohlc(data)
return talib.ADXR(phigh, plow, pclose, **kwargs)