本文整理汇总了Python中talib.AD属性的典型用法代码示例。如果您正苦于以下问题:Python talib.AD属性的具体用法?Python talib.AD怎么用?Python talib.AD使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类talib
的用法示例。
在下文中一共展示了talib.AD属性的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ad
# 需要导入模块: import talib [as 别名]
# 或者: from talib import AD [as 别名]
def ad(candles: np.ndarray, sequential=False) -> Union[float, np.ndarray]:
"""
AD - Chaikin A/D Line
:param candles: np.ndarray
:param sequential: bool - default=False
:return: float | np.ndarray
"""
if not sequential and len(candles) > 240:
candles = candles[-240:]
res = talib.AD(candles[:, 3], candles[:, 4], candles[:, 2], candles[:, 5])
if sequential:
return res
else:
return None if np.isnan(res[-1]) else res[-1]
示例2: AD
# 需要导入模块: import talib [as 别名]
# 或者: from talib import AD [as 别名]
def AD(DataFrame):
res = talib.AD(DataFrame.high.values, DataFrame.low.values,
DataFrame.close.values, DataFrame.volume.values)
return pd.DataFrame({'AD': res}, index=DataFrame.index)
示例3: ad
# 需要导入模块: import talib [as 别名]
# 或者: from talib import AD [as 别名]
def ad(self, sym, frequency):
if not self.kbars_ready(sym, frequency):
return []
highs = self.high(sym, frequency)
lows = self.low(sym, frequency)
closes = self.close(sym, frequency)
volumes = self.volume(sym, frequency)
v = ta.AD(highs, lows, closes, volumes)
return v
示例4: technical_indicators_df
# 需要导入模块: import talib [as 别名]
# 或者: from talib import AD [as 别名]
def technical_indicators_df(self, daily_data):
"""
Assemble a dataframe of technical indicator series for a single stock
"""
o = daily_data['Open'].values
c = daily_data['Close'].values
h = daily_data['High'].values
l = daily_data['Low'].values
v = daily_data['Volume'].astype(float).values
# define the technical analysis matrix
# Most data series are normalized by their series' mean
ta = pd.DataFrame()
ta['MA5'] = tb.MA(c, timeperiod=5) / tb.MA(c, timeperiod=5).mean()
ta['MA10'] = tb.MA(c, timeperiod=10) / tb.MA(c, timeperiod=10).mean()
ta['MA20'] = tb.MA(c, timeperiod=20) / tb.MA(c, timeperiod=20).mean()
ta['MA60'] = tb.MA(c, timeperiod=60) / tb.MA(c, timeperiod=60).mean()
ta['MA120'] = tb.MA(c, timeperiod=120) / tb.MA(c, timeperiod=120).mean()
ta['MA5'] = tb.MA(v, timeperiod=5) / tb.MA(v, timeperiod=5).mean()
ta['MA10'] = tb.MA(v, timeperiod=10) / tb.MA(v, timeperiod=10).mean()
ta['MA20'] = tb.MA(v, timeperiod=20) / tb.MA(v, timeperiod=20).mean()
ta['ADX'] = tb.ADX(h, l, c, timeperiod=14) / tb.ADX(h, l, c, timeperiod=14).mean()
ta['ADXR'] = tb.ADXR(h, l, c, timeperiod=14) / tb.ADXR(h, l, c, timeperiod=14).mean()
ta['MACD'] = tb.MACD(c, fastperiod=12, slowperiod=26, signalperiod=9)[0] / \
tb.MACD(c, fastperiod=12, slowperiod=26, signalperiod=9)[0].mean()
ta['RSI'] = tb.RSI(c, timeperiod=14) / tb.RSI(c, timeperiod=14).mean()
ta['BBANDS_U'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[0] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[0].mean()
ta['BBANDS_M'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[1] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[1].mean()
ta['BBANDS_L'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[2] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[2].mean()
ta['AD'] = tb.AD(h, l, c, v) / tb.AD(h, l, c, v).mean()
ta['ATR'] = tb.ATR(h, l, c, timeperiod=14) / tb.ATR(h, l, c, timeperiod=14).mean()
ta['HT_DC'] = tb.HT_DCPERIOD(c) / tb.HT_DCPERIOD(c).mean()
ta["High/Open"] = h / o
ta["Low/Open"] = l / o
ta["Close/Open"] = c / o
self.ta = ta
示例5: AD
# 需要导入模块: import talib [as 别名]
# 或者: from talib import AD [as 别名]
def AD(frame, high_col='high', low_col='low', close_col='close', vol_col='Volume'):
"""Chaikin A/D Line"""
return _frame_to_series(frame, [high_col, low_col, close_col, vol_col], talib.AD)
示例6: test_ad
# 需要导入模块: import talib [as 别名]
# 或者: from talib import AD [as 别名]
def test_ad(self):
result = pandas_ta.ad(self.high, self.low, self.close, self.volume_)
self.assertIsInstance(result, Series)
self.assertEqual(result.name, 'AD')
try:
expected = tal.AD(self.high, self.low, self.close, self.volume_)
pdt.assert_series_equal(result, expected, check_names=False)
except AssertionError as ae:
try:
corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION)
self.assertGreater(corr, CORRELATION_THRESHOLD)
except Exception as ex:
error_analysis(result, CORRELATION, ex)
示例7: AD
# 需要导入模块: import talib [as 别名]
# 或者: from talib import AD [as 别名]
def AD(data, **kwargs):
_check_talib_presence()
popen, phigh, plow, pclose, pvolume = _extract_ohlc(data)
return talib.AD(popen, phigh, plow, pclose, pvolume, **kwargs)