当前位置: 首页>>代码示例>>Python>>正文


Python api.GLS属性代码示例

本文整理汇总了Python中statsmodels.api.GLS属性的典型用法代码示例。如果您正苦于以下问题:Python api.GLS属性的具体用法?Python api.GLS怎么用?Python api.GLS使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在statsmodels.api的用法示例。


在下文中一共展示了api.GLS属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _get_sigma

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def _get_sigma(sigma, nobs):
    """
    Returns sigma (matrix, nobs by nobs) for GLS and the inverse of its
    Cholesky decomposition.  Handles dimensions and checks integrity.
    If sigma is None, returns None, None. Otherwise returns sigma,
    cholsigmainv.
    """
    if sigma is None:
        return None, None
    sigma = np.asarray(sigma).squeeze()
    if sigma.ndim == 0:
        sigma = np.repeat(sigma, nobs)
    if sigma.ndim == 1:
        if sigma.shape != (nobs,):
            raise ValueError("Sigma must be a scalar, 1d of length %s or a 2d "
                             "array of shape %s x %s" % (nobs, nobs, nobs))
        cholsigmainv = 1/np.sqrt(sigma)
    else:
        if sigma.shape != (nobs, nobs):
            raise ValueError("Sigma must be a scalar, 1d of length %s or a 2d "
                             "array of shape %s x %s" % (nobs, nobs, nobs))
        cholsigmainv = np.linalg.cholesky(np.linalg.inv(sigma)).T
    return sigma, cholsigmainv 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:25,代码来源:linear_model.py

示例2: reg_m

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def reg_m(y, x, estimator, weights=None):
    ones = np.ones(len(x[0]))
    X = sm.add_constant(np.column_stack((x[0], ones)))
    for ele in x[1:]:
        X = sm.add_constant(np.column_stack((ele, X)))

    if estimator=='ols':
        return sm.OLS(y, X).fit()

    elif estimator=='wls':
        return sm.WLS(y, X, weights).fit()

    elif estimator=='gls':
        return sm.GLS(y, X).fit()

    return None

############################
#Run general linear regression
####func array contains the array of functions consdered in the regression
####params coefficients are reversed; the first param coefficient corresponds to the last function in func array
####notice the independent vectors are given in dictionary format, egs:{'bob':[1,2,3,4,5],'mary':[1,2,3,4,5]} 
开发者ID:MacroConnections,项目名称:DIVE-backend,代码行数:24,代码来源:fit.py

示例3: _get_sigma

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def _get_sigma(sigma, nobs):
    """
    Returns sigma (matrix, nobs by nobs) for GLS and the inverse of its
    Cholesky decomposition.  Handles dimensions and checks integrity.
    If sigma is None, returns None, None. Otherwise returns sigma,
    cholsigmainv.
    """
    if sigma is None:
        return None, None
    sigma = np.asarray(sigma).squeeze()
    if sigma.ndim == 0:
        sigma = np.repeat(sigma, nobs)
    if sigma.ndim == 1:
        if sigma.shape != (nobs,):
            raise ValueError("Sigma must be a scalar, 1d of length %s or a 2d "
                             "array of shape %s x %s" % (nobs, nobs, nobs))
        cholsigmainv = 1/np.sqrt(sigma)
    else:
        if sigma.shape != (nobs, nobs):
            raise ValueError("Sigma must be a scalar, 1d of length %s or a 2d "
                             "array of shape %s x %s" % (nobs, nobs, nobs))
        cholsigmainv = np.linalg.cholesky(np.linalg.pinv(sigma)).T

    return sigma, cholsigmainv 
开发者ID:nccgroup,项目名称:Splunking-Crime,代码行数:26,代码来源:linear_model.py

示例4: test_pipeline

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def test_pipeline(self):
        from sklearn.feature_selection import SelectKBest
        from sklearn.feature_selection import f_regression
        from sklearn.pipeline import Pipeline

        diabetes = datasets.load_diabetes()
        models = ['OLS', 'GLS', 'WLS', 'GLSAR', 'QuantReg', 'GLM', 'RLM']

        for model in models:
            klass = getattr(sm, model)

            selector = SelectKBest(f_regression, k=5)
            estimator = Pipeline([('selector', selector),
                                  ('reg', base.StatsModelsRegressor(klass))])

            estimator.fit(diabetes.data, diabetes.target)
            result = estimator.predict(diabetes.data)

            data = SelectKBest(f_regression, k=5).fit_transform(diabetes.data, diabetes.target)
            expected = klass(diabetes.target, data).fit().predict(data)
            self.assert_numpy_array_almost_equal(result, expected) 
开发者ID:pandas-ml,项目名称:pandas-ml,代码行数:23,代码来源:test_base.py

示例5: __init__

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def __init__(self, endog, exog, sigma=None, missing='none', hasconst=None,
                 **kwargs):
        # TODO: add options igls, for iterative fgls if sigma is None
        # TODO: default if sigma is none should be two-step GLS
        sigma, cholsigmainv = _get_sigma(sigma, len(endog))

        super(GLS, self).__init__(endog, exog, missing=missing,
                                  hasconst=hasconst, sigma=sigma,
                                  cholsigmainv=cholsigmainv, **kwargs)

        # store attribute names for data arrays
        self._data_attr.extend(['sigma', 'cholsigmainv']) 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:14,代码来源:linear_model.py

示例6: whiten

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def whiten(self, X):
        """
        GLS whiten method.

        Parameters
        -----------
        X : array-like
            Data to be whitened.

        Returns
        -------
        np.dot(cholsigmainv,X)

        See Also
        --------
        regression.GLS
        """
        X = np.asarray(X)
        if self.sigma is None or self.sigma.shape == ():
            return X
        elif self.sigma.ndim == 1:
            if X.ndim == 1:
                return X * self.cholsigmainv
            else:
                return X * self.cholsigmainv[:, None]
        else:
            return np.dot(self.cholsigmainv, X) 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:29,代码来源:linear_model.py

示例7: loglike

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def loglike(self, params):
        """
        Returns the value of the Gaussian log-likelihood function at params.

        Given the whitened design matrix, the log-likelihood is evaluated
        at the parameter vector `params` for the dependent variable `endog`.

        Parameters
        ----------
        params : array-like
            The parameter estimates

        Returns
        -------
        loglike : float
            The value of the log-likelihood function for a GLS Model.


        Notes
        -----
        The log-likelihood function for the normal distribution is

        .. math:: -\\frac{n}{2}\\log\\left(\\left(Y-\\hat{Y}\\right)^{\\prime}\\left(Y-\\hat{Y}\\right)\\right)-\\frac{n}{2}\\left(1+\\log\\left(\\frac{2\\pi}{n}\\right)\\right)-\\frac{1}{2}\\log\\left(\\left|\\Sigma\\right|\\right)

        Y and Y-hat are whitened.

        """
        # TODO: combine this with OLS/WLS loglike and add _det_sigma argument
        nobs2 = self.nobs / 2.0
        SSR = np.sum((self.wendog - np.dot(self.wexog, params))**2, axis=0)
        llf = -np.log(SSR) * nobs2      # concentrated likelihood
        llf -= (1+np.log(np.pi/nobs2))*nobs2  # with likelihood constant
        if np.any(self.sigma):
            # FIXME: robust-enough check? unneeded if _det_sigma gets defined
            if self.sigma.ndim == 2:
                det = np.linalg.slogdet(self.sigma)
                llf -= .5*det[1]
            else:
                llf -= 0.5*np.sum(np.log(self.sigma))
            # with error covariance matrix
        return llf 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:43,代码来源:linear_model.py

示例8: test_statsmodels_unknown_constant_position

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def test_statsmodels_unknown_constant_position():
    estimator = utils.StatsmodelsSklearnLikeWrapper(
        sm.GLS,
        dict(init=dict(hasconst=True)))
    _, __, estimator = utils.get_regression_model_trainer()(estimator)

    assembler = assemblers.StatsmodelsLinearModelAssembler(estimator)
    assembler.assemble() 
开发者ID:BayesWitnesses,项目名称:m2cgen,代码行数:10,代码来源:test_linear.py

示例9: gls

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def gls(data, xseq, **params):
    """
    Fit GLS
    """
    if params['formula']:
        return gls_formula(data, xseq, **params)

    X = sm.add_constant(data['x'])
    Xseq = sm.add_constant(xseq)

    init_kwargs, fit_kwargs = separate_method_kwargs(
        params['method_args'], sm.OLS, sm.OLS.fit)
    model = sm.GLS(data['y'], X, **init_kwargs)
    results = model.fit(**fit_kwargs)

    data = pd.DataFrame({'x': xseq})
    data['y'] = results.predict(Xseq)

    if params['se']:
        alpha = 1 - params['level']
        prstd, iv_l, iv_u = wls_prediction_std(
            results, Xseq, alpha=alpha)
        data['se'] = prstd
        data['ymin'] = iv_l
        data['ymax'] = iv_u

    return data 
开发者ID:has2k1,项目名称:plotnine,代码行数:29,代码来源:smoothers.py

示例10: gls_formula

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def gls_formula(data, xseq, **params):
    """
    Fit GLL using a formula
    """
    eval_env = params['enviroment']
    formula = params['formula']
    init_kwargs, fit_kwargs = separate_method_kwargs(
        params['method_args'], sm.GLS, sm.GLS.fit)
    model = smf.gls(
        formula,
        data,
        eval_env=eval_env,
        **init_kwargs
    )
    results = model.fit(**fit_kwargs)
    data = pd.DataFrame({'x': xseq})
    data['y'] = results.predict(data)

    if params['se']:
        _, predictors = dmatrices(formula, data, eval_env=eval_env)
        alpha = 1 - params['level']
        prstd, iv_l, iv_u = wls_prediction_std(
            results, predictors, alpha=alpha)
        data['se'] = prstd
        data['ymin'] = iv_l
        data['ymax'] = iv_u
    return data 
开发者ID:has2k1,项目名称:plotnine,代码行数:29,代码来源:smoothers.py

示例11: __init__

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def __init__(self, endog, exog, sigma=None, missing='none', hasconst=None,
                 **kwargs):
    #TODO: add options igls, for iterative fgls if sigma is None
    #TODO: default if sigma is none should be two-step GLS
        sigma, cholsigmainv = _get_sigma(sigma, len(endog))

        super(GLS, self).__init__(endog, exog, missing=missing,
                                  hasconst=hasconst, sigma=sigma,
                                  cholsigmainv=cholsigmainv, **kwargs)

        #store attribute names for data arrays
        self._data_attr.extend(['sigma', 'cholsigmainv']) 
开发者ID:nccgroup,项目名称:Splunking-Crime,代码行数:14,代码来源:linear_model.py

示例12: loglike

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def loglike(self, params):
        """
        Returns the value of the Gaussian log-likelihood function at params.

        Given the whitened design matrix, the log-likelihood is evaluated
        at the parameter vector `params` for the dependent variable `endog`.

        Parameters
        ----------
        params : array-like
            The parameter estimates

        Returns
        -------
        loglike : float
            The value of the log-likelihood function for a GLS Model.


        Notes
        -----
        The log-likelihood function for the normal distribution is

        .. math:: -\\frac{n}{2}\\log\\left(\\left(Y-\\hat{Y}\\right)^{\\prime}\\left(Y-\\hat{Y}\\right)\\right)-\\frac{n}{2}\\left(1+\\log\\left(\\frac{2\\pi}{n}\\right)\\right)-\\frac{1}{2}\\log\\left(\\left|\\Sigma\\right|\\right)

        Y and Y-hat are whitened.

        """
        #TODO: combine this with OLS/WLS loglike and add _det_sigma argument
        nobs2 = self.nobs / 2.0
        SSR = np.sum((self.wendog - np.dot(self.wexog, params))**2, axis=0)
        llf = -np.log(SSR) * nobs2      # concentrated likelihood
        llf -= (1+np.log(np.pi/nobs2))*nobs2  # with likelihood constant
        if np.any(self.sigma):
        #FIXME: robust-enough check?  unneeded if _det_sigma gets defined
            if self.sigma.ndim==2:
                det = np.linalg.slogdet(self.sigma)
                llf -= .5*det[1]
            else:
                llf -= 0.5*np.sum(np.log(self.sigma))
            # with error covariance matrix
        return llf 
开发者ID:nccgroup,项目名称:Splunking-Crime,代码行数:43,代码来源:linear_model.py

示例13: test_Regressions

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def test_Regressions(self):
        diabetes = datasets.load_diabetes()
        models = ['OLS', 'GLS', 'WLS', 'GLSAR', 'QuantReg', 'GLM', 'RLM']

        for model in models:
            klass = getattr(sm, model)

            estimator = base.StatsModelsRegressor(klass)
            estimator.fit(diabetes.data, diabetes.target)
            result = estimator.predict(diabetes.data)

            expected = klass(diabetes.target, diabetes.data).fit().predict(diabetes.data)
            self.assert_numpy_array_almost_equal(result, expected) 
开发者ID:pandas-ml,项目名称:pandas-ml,代码行数:15,代码来源:test_base.py

示例14: test_gridsearch

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def test_gridsearch(self):
        import sklearn.model_selection as ms
        tuned_parameters = {'statsmodel': [sm.OLS, sm.GLS]}
        diabetes = datasets.load_diabetes()

        cv = ms.GridSearchCV(base.StatsModelsRegressor(sm.OLS), tuned_parameters, cv=5, scoring=None)
        fitted = cv.fit(diabetes.data, diabetes.target)
        self.assertTrue(fitted.best_estimator_.statsmodel is sm.OLS) 
开发者ID:pandas-ml,项目名称:pandas-ml,代码行数:10,代码来源:test_base.py

示例15: iterative_fit

# 需要导入模块: from statsmodels import api [as 别名]
# 或者: from statsmodels.api import GLS [as 别名]
def iterative_fit(self, maxiter=3, rtol=1e-4, **kwds):
        """
        Perform an iterative two-stage procedure to estimate a GLS model.

        The model is assumed to have AR(p) errors, AR(p) parameters and
        regression coefficients are estimated iteratively.

        Parameters
        ----------
        maxiter : integer, optional
            the number of iterations
        rtol : float, optional
            Relative tolerance between estimated coefficients to stop the
            estimation.  Stops if

            max(abs(last - current) / abs(last)) < rtol

        """
        # TODO: update this after going through example.
        converged = False
        i = -1  # need to initialize for maxiter < 1 (skip loop)
        history = {'params': [], 'rho': [self.rho]}
        for i in range(maxiter - 1):
            if hasattr(self, 'pinv_wexog'):
                del self.pinv_wexog
            self.initialize()
            results = self.fit()
            history['params'].append(results.params)
            if i == 0:
                last = results.params
            else:
                diff = np.max(np.abs(last - results.params) / np.abs(last))
                if diff < rtol:
                    converged = True
                    break
                last = results.params
            self.rho, _ = yule_walker(results.resid,
                                      order=self.order, df=None)
            history['rho'].append(self.rho)

        # why not another call to self.initialize
        # Use kwarg to insert history
        if not converged and maxiter > 0:
            # maxiter <= 0 just does OLS
            if hasattr(self, 'pinv_wexog'):
                del self.pinv_wexog
            self.initialize()

        # if converged then this is a duplicate fit, because we didn't
        # update rho
        results = self.fit(history=history, **kwds)
        results.iter = i + 1
        # add last fit to history, not if duplicate fit
        if not converged:
            results.history['params'].append(results.params)
            results.iter += 1

        results.converged = converged

        return results 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:62,代码来源:linear_model.py


注:本文中的statsmodels.api.GLS属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。