本文整理汇总了Python中sonnet.LSTM属性的典型用法代码示例。如果您正苦于以下问题:Python sonnet.LSTM属性的具体用法?Python sonnet.LSTM怎么用?Python sonnet.LSTM使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类sonnet
的用法示例。
在下文中一共展示了sonnet.LSTM属性的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import LSTM [as 别名]
def __init__(self,
access_config,
controller_config,
output_size,
clip_value=None,
name='dnc'):
"""Initializes the DNC core.
Args:
access_config: dictionary of access module configurations.
controller_config: dictionary of controller (LSTM) module configurations.
output_size: output dimension size of core.
clip_value: clips controller and core output values to between
`[-clip_value, clip_value]` if specified.
name: module name (default 'dnc').
Raises:
TypeError: if direct_input_size is not None for any access module other
than KeyValueMemory.
"""
super(DNC, self).__init__(name=name)
with self._enter_variable_scope():
self._controller = snt.LSTM(**controller_config)
self._access = access.MemoryAccess(**access_config)
self._access_output_size = np.prod(self._access.output_size.as_list())
self._output_size = output_size
self._clip_value = clip_value or 0
self._output_size = tf.TensorShape([output_size])
self._state_size = DNCState(
access_output=self._access_output_size,
access_state=self._access.state_size,
controller_state=self._controller.state_size)
示例2: make_rnn
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import LSTM [as 别名]
def make_rnn(hparams, name):
"""Constructs a DeepRNN using hparams.rnn_hidden_sizes."""
regularizers = {
snt.LSTM.W_GATES: regularizer(hparams)
}
with tf.variable_scope(name):
layers = [snt.LSTM(size, regularizers=regularizers)
for size in hparams.rnn_hidden_sizes]
return snt.DeepRNN(layers, skip_connections=False, name=name)
示例3: __init__
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import LSTM [as 别名]
def __init__(self, hidden_sizes: Sequence[int], num_actions: int):
super().__init__(name='policy_value_net')
self._torso = snt.nets.MLP(hidden_sizes, activate_final=True, name='torso')
self._core = snt.LSTM(hidden_sizes[-1], name='rnn')
self._policy_head = snt.Linear(num_actions, name='policy_head')
self._value_head = snt.Linear(1, name='value_head')
示例4: __init__
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import LSTM [as 别名]
def __init__(self, output_size, layers, preprocess_name="identity",
preprocess_options=None, scale=1.0, initializer=None,
name="deep_lstm"):
"""Creates an instance of `StandardDeepLSTM`.
Args:
output_size: Output sizes of the final linear layer.
layers: Output sizes of LSTM layers.
preprocess_name: Gradient preprocessing class name (in `l2l.preprocess` or
tf modules). Default is `tf.identity`.
preprocess_options: Gradient preprocessing options.
scale: Gradient scaling (default is 1.0).
initializer: Variable initializer for linear layer. See `snt.Linear` and
`snt.LSTM` docs for more info. This parameter can be a string (e.g.
"zeros" will be converted to tf.zeros_initializer).
name: Module name.
"""
super(StandardDeepLSTM, self).__init__(name=name)
self._output_size = output_size
self._scale = scale
if hasattr(preprocess, preprocess_name):
preprocess_class = getattr(preprocess, preprocess_name)
self._preprocess = preprocess_class(**preprocess_options)
else:
self._preprocess = getattr(tf, preprocess_name)
with tf.variable_scope(self._template.variable_scope):
self._cores = []
for i, size in enumerate(layers, start=1):
name = "lstm_{}".format(i)
init = _get_layer_initializers(initializer, name,
("w_gates", "b_gates"))
self._cores.append(snt.LSTM(size, name=name, initializers=init))
self._rnn = snt.DeepRNN(self._cores, skip_connections=False,
name="deep_rnn")
init = _get_layer_initializers(initializer, "linear", ("w", "b"))
self._linear = snt.Linear(output_size, name="linear", initializers=init)
示例5: __init__
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import LSTM [as 别名]
def __init__(self, init_with_true_state=False, model='2lstm', **unused_kwargs):
self.placeholders = {'o': tf.placeholder('float32', [None, None, 24, 24, 3], 'observations'),
'a': tf.placeholder('float32', [None, None, 3], 'actions'),
's': tf.placeholder('float32', [None, None, 3], 'states'),
'keep_prob': tf.placeholder('float32')}
self.pred_states = None
self.init_with_true_state = init_with_true_state
self.model = model
# build models
# <-- observation
self.encoder = snt.Sequential([
snt.nets.ConvNet2D([16, 32, 64], [[3, 3]], [2], [snt.SAME], activate_final=True, name='encoder/convnet'),
snt.BatchFlatten(),
lambda x: tf.nn.dropout(x, self.placeholders['keep_prob']),
snt.Linear(128, name='encoder/Linear'),
tf.nn.relu,
])
# <-- action
if self.model == '2lstm':
self.rnn1 = snt.LSTM(512)
self.rnn2 = snt.LSTM(512)
if self.model == '2gru':
self.rnn1 = snt.GRU(512)
self.rnn2 = snt.GRU(512)
elif self.model == 'ff':
self.ff_lstm_replacement = snt.Sequential([
snt.Linear(512),
tf.nn.relu,
snt.Linear(512),
tf.nn.relu])
self.belief_decoder = snt.Sequential([
snt.Linear(256),
tf.nn.relu,
snt.Linear(256),
tf.nn.relu,
snt.Linear(3)
])
示例6: __init__
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import LSTM [as 别名]
def __init__(self, obs, nums, glimpse_size=(20, 20),
inpt_encoder_hidden=[256]*2,
glimpse_encoder_hidden=[256]*2,
glimpse_decoder_hidden=[252]*2,
transform_estimator_hidden=[256]*2,
steps_pred_hidden=[50]*1,
baseline_hidden=[256, 128]*1,
transform_var_bias=-2.,
step_bias=0.,
*args, **kwargs):
self.transform_var_bias = tf.Variable(transform_var_bias, trainable=False, dtype=tf.float32,
name='transform_var_bias')
self.step_bias = tf.Variable(step_bias, trainable=False, dtype=tf.float32, name='step_bias')
self.baseline = BaselineMLP(baseline_hidden)
super(AIRonMNIST, self).__init__(
*args,
obs=obs,
nums=nums,
glimpse_size=glimpse_size,
n_appearance=50,
transition=snt.LSTM(256),
input_encoder=partial(Encoder, inpt_encoder_hidden),
glimpse_encoder=partial(Encoder, glimpse_encoder_hidden),
glimpse_decoder=partial(Decoder, glimpse_decoder_hidden),
transform_estimator=partial(StochasticTransformParam, transform_estimator_hidden,
scale_bias=self.transform_var_bias),
steps_predictor=partial(StepsPredictor, steps_pred_hidden, self.step_bias),
output_std=.3,
**kwargs
)
示例7: __init__
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import LSTM [as 别名]
def __init__(self,
target_ensembles,
nh_lstm,
nh_bottleneck,
nh_embed=None,
dropoutrates_bottleneck=None,
bottleneck_weight_decay=0.0,
bottleneck_has_bias=False,
init_weight_disp=0.0,
name="grid_cells_core"):
"""Constructor of the RNN cell.
Args:
target_ensembles: Targets, place cells and head direction cells.
nh_lstm: Size of LSTM cell.
nh_bottleneck: Size of the linear layer between LSTM output and output.
nh_embed: Number of hiddens between input and LSTM input.
dropoutrates_bottleneck: Iterable of keep rates (0,1]. The linear layer is
partitioned into as many groups as the len of this parameter.
bottleneck_weight_decay: Weight decay used in the bottleneck layer.
bottleneck_has_bias: If the bottleneck has a bias.
init_weight_disp: Displacement in the weights initialisation.
name: the name of the module.
"""
super(GridCellsRNNCell, self).__init__(name=name)
self._target_ensembles = target_ensembles
self._nh_embed = nh_embed
self._nh_lstm = nh_lstm
self._nh_bottleneck = nh_bottleneck
self._dropoutrates_bottleneck = dropoutrates_bottleneck
self._bottleneck_weight_decay = bottleneck_weight_decay
self._bottleneck_has_bias = bottleneck_has_bias
self._init_weight_disp = init_weight_disp
self.training = False
with self._enter_variable_scope():
self._lstm = snt.LSTM(self._nh_lstm)
示例8: _build
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import LSTM [as 别名]
def _build(self, init_conds, vels, training=False):
"""Outputs place, and head direction cell predictions from velocity inputs.
Args:
init_conds: Initial conditions given by ensemble activatons, list [BxN_i]
vels: Translational and angular velocities [BxTxV]
training: Activates and deactivates dropout
Returns:
[logits_i]:
logits_i: Logits predicting i-th ensemble activations (BxTxN_i)
"""
# Calculate initialization for LSTM. Concatenate pc and hdc activations
concat_init = tf.concat(init_conds, axis=1)
init_lstm_state = snt.Linear(self._nh_lstm, name="state_init")(concat_init)
init_lstm_cell = snt.Linear(self._nh_lstm, name="cell_init")(concat_init)
self._core.training = training
# Run LSTM
output_seq, final_state = tf.nn.dynamic_rnn(cell=self._core,
inputs=(vels,),
time_major=False,
initial_state=(init_lstm_state,
init_lstm_cell))
ens_targets = output_seq[:-2]
bottleneck = output_seq[-2]
lstm_output = output_seq[-1]
# Return
return (ens_targets, bottleneck, lstm_output), final_state