当前位置: 首页>>代码示例>>Python>>正文


Python kernels.RBF属性代码示例

本文整理汇总了Python中sklearn.gaussian_process.kernels.RBF属性的典型用法代码示例。如果您正苦于以下问题:Python kernels.RBF属性的具体用法?Python kernels.RBF怎么用?Python kernels.RBF使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在sklearn.gaussian_process.kernels的用法示例。


在下文中一共展示了kernels.RBF属性的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_random_starts

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def test_random_starts():
    # Test that an increasing number of random-starts of GP fitting only
    # increases the log marginal likelihood of the chosen theta.
    n_samples, n_features = 25, 2
    rng = np.random.RandomState(0)
    X = rng.randn(n_samples, n_features) * 2 - 1
    y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0

    kernel = C(1.0, (1e-2, 1e2)) \
        * RBF(length_scale=[1e-3] * n_features,
              length_scale_bounds=[(1e-4, 1e+2)] * n_features)
    last_lml = -np.inf
    for n_restarts_optimizer in range(5):
        gp = GaussianProcessClassifier(
            kernel=kernel, n_restarts_optimizer=n_restarts_optimizer,
            random_state=0).fit(X, y)
        lml = gp.log_marginal_likelihood(gp.kernel_.theta)
        assert_greater(lml, last_lml - np.finfo(np.float32).eps)
        last_lml = lml 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:21,代码来源:test_gpc.py

示例2: _init_all_models

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def _init_all_models(self):
        self.names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",
                      "Decision Tree", "Random Forest", "Neural Net", "AdaBoost",
                      "Naive Bayes", "QDA"]
        self.model_name = None
        self.classifiers = [
            KNeighborsClassifier(5),
            SVC(kernel="linear", C=10.0),
            SVC(gamma=0.01, C=1.0, verbose=True),
            GaussianProcessClassifier(1.0 * RBF(1.0)),
            DecisionTreeClassifier(max_depth=5),
            RandomForestClassifier(
                max_depth=30, n_estimators=100, max_features="auto"),
            MLPClassifier((20, 30, 40)),  # Neural Net
            AdaBoostClassifier(),
            GaussianNB(),
            QuadraticDiscriminantAnalysis()] 
开发者ID:felixchenfy,项目名称:Realtime-Action-Recognition,代码行数:19,代码来源:lib_classifier.py

示例3: __init__

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def __init__(self, **kwargs):
        super(GPR, self).__init__(**kwargs)
        self.name = "GPR"
        self.detail = "Gaussian Process Regression"
        self.is_high_order = True
        self.has_point_forecasting = True
        self.has_interval_forecasting = True
        self.has_probability_forecasting = True
        self.uod_clip = False
        self.benchmark_only = True
        self.min_order = 1
        self.alpha = kwargs.get("alpha", 0.05)
        self.data = None

        self.lscale = kwargs.get('length_scale', 1)

        self.kernel = ConstantKernel(1.0) * RBF(length_scale=self.lscale)
        self.model = GaussianProcessRegressor(kernel=self.kernel, alpha=.05,
                                      n_restarts_optimizer=10,
                                      normalize_y=False)
        #self.model_fit = None 
开发者ID:PYFTS,项目名称:pyFTS,代码行数:23,代码来源:gaussianproc.py

示例4: GP_regression

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def GP_regression(tr_x,tr_y,test_x):
    A = np.ones((len(tr_x),2))
    A[:,0] = tr_x[:,0]
    p = np.matmul(np.linalg.pinv(A),tr_y)
    mean_tr_y = np.matmul(A,p)
    A = np.ones((len(test_x),2))
    A[:,0] = test_x[:,0]
    mean_test_y = np.matmul(A,p)
    kernel = ConstantKernel(100,(1e-5, 1e5))*RBF(1, (1e-5, 1e5))+RBF(1, (1e-5, 1e5))
    gp = GaussianProcessRegressor(kernel=kernel, alpha=1, n_restarts_optimizer=9)
    gp.fit(tr_x, tr_y-mean_tr_y)
    test_y, sigma = gp.predict(test_x, return_std=True)
    test_y = test_y+mean_test_y
    #import pdb; pdb.set_trace()
    return test_y 
开发者ID:GaoangW,项目名称:TNT,代码行数:17,代码来源:track_lib.py

示例5: __init__

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def __init__(self):
        self._init_all_models()

        # self.clf = self._choose_model("Nearest Neighbors")
        # self.clf = self._choose_model("Linear SVM")
        # self.clf = self._choose_model("RBF SVM")
        # self.clf = self._choose_model("Gaussian Process")
        # self.clf = self._choose_model("Decision Tree")
        # self.clf = self._choose_model("Random Forest")
        self.clf = self._choose_model("Neural Net") 
开发者ID:felixchenfy,项目名称:Realtime-Action-Recognition,代码行数:12,代码来源:lib_classifier.py

示例6: __init_metamodel__

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def __init_metamodel__(self, length_scale=1):
        if self._model_kwargs is None:
            self._model_kwargs = {}

        self._model_kwargs['kernel'] = RBF(length_scale=length_scale) 
开发者ID:HDI-Project,项目名称:BTB,代码行数:7,代码来源:gaussian_process.py

示例7: get_gaussian_process

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def get_gaussian_process(config, random_generator):
        if not isinstance(config, GaussianProcessConfig):
            raise ValueError("Received a non valid configuration.")

        if GaussianProcessesKernels.is_rbf(config.kernel):
            kernel = RBF(length_scale=config.length_scale)
        else:
            kernel = Matern(length_scale=config.length_scale, nu=config.nu)

        return GaussianProcessRegressor(
            kernel=kernel,
            n_restarts_optimizer=config.num_restarts_optimizer,
            random_state=random_generator,
        ) 
开发者ID:polyaxon,项目名称:polyaxon,代码行数:16,代码来源:acquisition_function.py

示例8: __init__

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def __init__(self, space):
        self.space = space
        self.k = kernels.ConstantKernel() * kernels.RBF() 
开发者ID:AIworx-Labs,项目名称:chocolate,代码行数:5,代码来源:kernels.py

示例9: test_gp_regression_learner

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def test_gp_regression_learner():
    df_train = pd.DataFrame({
        'id': ["id1", "id2", "id3", "id4"],
        'x1': [10.0, 13.0, 10.0, 13.0],
        "x2": [0, 1, 1, 0],
        'y': [2.3, 4.0, 100.0, -3.9]
    })

    df_test = pd.DataFrame({
        'id': ["id4", "id4", "id5", "id6"],
        'x1': [12.0, 1000.0, -4.0, 0.0],
        "x2": [1, 1, 0, 1],
        'y': [1.3, -4.0, 0.0, 49]
    })

    from sklearn.gaussian_process.kernels import RBF, WhiteKernel, DotProduct

    kernel = RBF() + WhiteKernel() + DotProduct()

    learner = gp_regression_learner(features=["x1", "x2"],
                                    target="y",
                                    kernel=kernel,
                                    alpha=0.1,
                                    extra_variance="fit",
                                    return_std=True,
                                    extra_params=None,
                                    prediction_column="prediction")

    predict_fn, pred_train, log = learner(df_train)

    pred_test = predict_fn(df_test)

    expected_col_train = df_train.columns.tolist() + ["prediction", "prediction_std"]
    expected_col_test = df_test.columns.tolist() + ["prediction", "prediction_std"]

    assert Counter(expected_col_train) == Counter(pred_train.columns.tolist())
    assert Counter(expected_col_test) == Counter(pred_test.columns.tolist())
    assert (pred_test.columns == pred_train.columns).all()
    assert "prediction" in pred_test.columns 
开发者ID:nubank,项目名称:fklearn,代码行数:41,代码来源:test_regression.py

示例10: create_gaussian_process

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def create_gaussian_process(self):
        '''
        Create the initial Gaussian process.
        '''
        if self.cost_has_noise:
            gp_kernel = skk.RBF(length_scale=self.length_scale) + skk.WhiteKernel(noise_level=self.noise_level)
        else:
            gp_kernel = skk.RBF(length_scale=self.length_scale)
        if self.update_hyperparameters:
            self.gaussian_process = skg.GaussianProcessRegressor(kernel=gp_kernel,n_restarts_optimizer=self.hyperparameter_searches)
        else:
            self.gaussian_process = skg.GaussianProcessRegressor(kernel=gp_kernel,optimizer=None) 
开发者ID:michaelhush,项目名称:M-LOOP,代码行数:14,代码来源:learners.py

示例11: gp_draws

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def gp_draws(ntrain, ntest, kern=RBF(length_scale=0.5), noise=0.1, xmin=-10,
             xmax=10):
    r"""Generate a random (noisy) draw from a Gaussian Process.

    Parameters
    ----------
    ntrain : int
        number of training points to generate
    ntest : int
        number of testing points to generate
    kern : scikit.gaussian_process.kernels
        kernel to generate data from
    noise : float
        Gaussian noise (standard deviation) to add to GP draws
    xmin : float
        minimum extent of inputs, X
    xmax : float
        maximum extent of inputs, X

    Returns
    -------
    Xtrain : ndarray
        of shape (ntrain, 1) of training inputs
    Ytrain : ndarray
        of shape (ntrain, 1) of training targets
    Xtest : ndarray
        of shape (ntrain, 1) of testing inputs
    Ytest : ndarray
        of shape (ntrain, 1) of testing targets
    """
    randgen = np.random.RandomState(next(seedgen))

    Xtrain = randgen.rand(ntrain)[:, np.newaxis] * (xmin - xmax) - xmin
    Xtest = np.linspace(xmin, xmax, ntest)[:, np.newaxis]
    Xcat = np.vstack((Xtrain, Xtest))

    K = kern(Xcat, Xcat)
    U, S, V = np.linalg.svd(K)
    L = U.dot(np.diag(np.sqrt(S))).dot(V)
    f = randgen.randn(ntrain + ntest).dot(L)

    Ytrain = f[0:ntrain] + randgen.randn(ntrain) * noise
    ftest = f[ntrain:]

    Xtrain = Xtrain.astype(np.float32)
    Ytrain = Ytrain[:, np.newaxis].astype(np.float32)
    Xtest = Xtest.astype(np.float32)
    ftest = ftest[:, np.newaxis].astype(np.float32)
    return Xtrain, Ytrain, Xtest, ftest 
开发者ID:gradientinstitute,项目名称:aboleth,代码行数:51,代码来源:datasets.py

示例12: gaussian_emulator

# 需要导入模块: from sklearn.gaussian_process import kernels [as 别名]
# 或者: from sklearn.gaussian_process.kernels import RBF [as 别名]
def gaussian_emulator(locator, config):
    """
    Thi is a Gaussian process linear emulator. It is used to create a surrogate model of CEA whose
    output is either rmse or cvrmse

    for more details on the work behind this please check:
    Rysanek A., Fonseca A., Schlueter, A. Bayesian calibration of Dyanmic building Energy Models. Applied Energy 2017.

    :param locator: pointer to location of CEA files
    :param samples: matrix m x n with samples simulated from CEA. m are the number of input variables [0,1]
    :param cv_rmse: array with results of cv_rmse after running n samples.
    :param building_name: name of building whose calibration process is being acted upon
    :return:
           file with database of emulator stored in locator.get_calibration_cvrmse_file(building_name)

    """
    # INITIALIZE TIMER
    t0 = time.clock()

    # Local variables
    building_name = config.single_calibration.building
    building_load = config.single_calibration.load
    with open(locator.get_calibration_problem(building_name, building_load),'r') as input_file:
        problem = pickle.load(input_file)
    samples_norm = problem["samples_norm"]
    target = problem["cv_rmse"]

    # Kernel with parameters given in GPML book for the gaussian surrogate models. The hyperparameters are optimized so you can get anything here.
    k1 = 5**2 * RBF(length_scale=1e-5)  # long term smooth rising trend RBF: radio basis functions (you can have many, this is one).
    k2 = 5**2 * RBF(length_scale=0.000415) * ExpSineSquared(length_scale=3.51e-5, periodicity=0.000199)  # seasonal component
    # medium term irregularity
    k3 = 316**2 * RationalQuadratic(length_scale=3.54, alpha=1e+05)
    k4 = 316**2 * RBF(length_scale=4.82) + WhiteKernel(noise_level=0.43)  # noise terms
    kernel = k1 + k2 + k3 + k4

    # give the data to the regressor.
    gp = GaussianProcessRegressor(kernel=kernel, alpha=1e-7, normalize_y=True, n_restarts_optimizer=2)
    gp.fit(samples_norm, target) # then fit the gp to your observations and the minmax. It takes 30 min - 1 h.

    # this is the result
    joblib.dump(gp, locator.get_calibration_gaussian_emulator(building_name, building_load))

    time_elapsed = time.clock() - t0
    print('done - time elapsed: %d.2f seconds' % time_elapsed) 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:46,代码来源:calibration_gaussian_emulator.py


注:本文中的sklearn.gaussian_process.kernels.RBF属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。