本文整理汇总了Python中rdkit.Chem.Descriptors.TPSA属性的典型用法代码示例。如果您正苦于以下问题:Python Descriptors.TPSA属性的具体用法?Python Descriptors.TPSA怎么用?Python Descriptors.TPSA使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类rdkit.Chem.Descriptors
的用法示例。
在下文中一共展示了Descriptors.TPSA属性的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: evaluate_chem_mol
# 需要导入模块: from rdkit.Chem import Descriptors [as 别名]
# 或者: from rdkit.Chem.Descriptors import TPSA [as 别名]
def evaluate_chem_mol(mol):
try:
Chem.GetSSSR(mol)
clogp = Crippen.MolLogP(mol)
mw = MolDescriptors.CalcExactMolWt(mol)
tpsa = Descriptors.TPSA(mol)
ret_val = [
True,
320 < mw < 420,
2 < clogp < 3,
40 < tpsa < 60
]
except:
ret_val = [False] * 4
return ret_val
# Same as above but decodes and check if a cached value could be used.
示例2: evaluate_chem_mol
# 需要导入模块: from rdkit.Chem import Descriptors [as 别名]
# 或者: from rdkit.Chem.Descriptors import TPSA [as 别名]
def evaluate_chem_mol(mol):
try:
Chem.GetSSSR(mol)
clogp = Crippen.MolLogP(mol)
mw = MolDescriptors.CalcExactMolWt(mol)
tpsa = Descriptors.TPSA(mol)
ret_val = [
True,
320 < mw < 420,
2 < clogp < 3,
40 < tpsa < 60
]
except:
ret_val = [False] * 4
return ret_val
# Same as above but decodes and check if a cached value could be used.
示例3: default_rule_template
# 需要导入模块: from rdkit.Chem import Descriptors [as 别名]
# 或者: from rdkit.Chem.Descriptors import TPSA [as 别名]
def default_rule_template(alert_list, file_name):
"""
Build a default rules template
:param alert_list: list of alert set names
:param file_name: output file name
:return: None
"""
default_rule_dict = {
"MW": [0, 500],
"LogP": [-5, 5],
"HBD": [0, 5],
"HBA": [0, 10],
"TPSA": [0, 200],
"Rot": [0, 10]
}
for rule_name in alert_list:
if rule_name == "Inpharmatica":
default_rule_dict["Rule_" + rule_name] = True
else:
default_rule_dict["Rule_" + rule_name] = False
write_rules(default_rule_dict, file_name)
示例4: evaluate
# 需要导入模块: from rdkit.Chem import Descriptors [as 别名]
# 或者: from rdkit.Chem.Descriptors import TPSA [as 别名]
def evaluate(self, lst_in):
"""
Evaluate structure alerts on a list of SMILES
:param lst_in: input list of [SMILES, Name]
:return: list of alerts matched or "OK"
"""
smiles, name = lst_in
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return [smiles, name, 'INVALID', -999, -999, -999, -999, -999]
desc_list = [MolWt(mol), MolLogP(mol), NumHDonors(mol), NumHAcceptors(mol), TPSA(mol),
CalcNumRotatableBonds(mol)]
for row in self.rule_list:
patt, max_val, desc = row
if len(mol.GetSubstructMatches(patt)) > max_val:
return [smiles, name] + [desc + " > %d" % (max_val)] + desc_list
return [smiles, name] + ["OK"] + desc_list
示例5: create_feature_df
# 需要导入模块: from rdkit.Chem import Descriptors [as 别名]
# 或者: from rdkit.Chem.Descriptors import TPSA [as 别名]
def create_feature_df(smiles_df):
temp = list(zip(*smiles_df['canonical_smiles'].map(get_descriptors)))
columns = ["MolLogP", "MolMR", "BalabanJ", "NumHAcceptors", "NumHDonors", "NumValenceElectrons", "TPSA"]
df = pd.DataFrame(columns=columns)
for i, c in enumerate(columns):
df.loc[:, c] = temp[i]
df = (df - df.mean(axis=0, numeric_only=True)) / df.std(axis=0, numeric_only=True)
df = smiles_df.join(df)
return df
示例6: get_descriptors
# 需要导入模块: from rdkit.Chem import Descriptors [as 别名]
# 或者: from rdkit.Chem.Descriptors import TPSA [as 别名]
def get_descriptors(sml):
try:
m = Chem.MolFromSmiles(sml)
descriptor_list = []
descriptor_list.append(Descriptors.MolLogP(m))
descriptor_list.append(Descriptors.MolMR(m)) #ok
descriptor_list.append(Descriptors.BalabanJ(m))
descriptor_list.append(Descriptors.NumHAcceptors(m)) #ok
descriptor_list.append(Descriptors.NumHDonors(m)) #ok
descriptor_list.append(Descriptors.NumValenceElectrons(m))
descriptor_list.append(Descriptors.TPSA(m)) # nice
return descriptor_list
except:
return [np.float("nan")] * 7
示例7: tpsa
# 需要导入模块: from rdkit.Chem import Descriptors [as 别名]
# 或者: from rdkit.Chem.Descriptors import TPSA [as 别名]
def tpsa(mol: Mol) -> float:
return Descriptors.TPSA(mol)
示例8: properties
# 需要导入模块: from rdkit.Chem import Descriptors [as 别名]
# 或者: from rdkit.Chem.Descriptors import TPSA [as 别名]
def properties(mol):
"""
Calculates the properties that are required to calculate the QED descriptor.
"""
matches = []
if mol is None:
raise WrongArgument("properties(mol)", "mol argument is \'None\'")
x = [0] * 9
# MW
x[0] = Descriptors.MolWt(mol)
# ALOGP
x[1] = Descriptors.MolLogP(mol)
for hba in Acceptors: # HBA
if mol.HasSubstructMatch(hba):
matches = mol.GetSubstructMatches(hba)
x[2] += len(matches)
x[3] = Descriptors.NumHDonors(
mol) # HBD
# PSA
x[4] = Descriptors.TPSA(mol)
x[5] = Descriptors.NumRotatableBonds(
mol) # ROTB
x[6] = Chem.GetSSSR(Chem.DeleteSubstructs(
deepcopy(mol), AliphaticRings)) # AROM
for alert in StructuralAlerts: # ALERTS
if (mol.HasSubstructMatch(alert)):
x[7] += 1
ro5_failed = 0
if x[3] > 5:
ro5_failed += 1 # HBD
if x[2] > 10:
ro5_failed += 1 # HBA
if x[0] >= 500:
ro5_failed += 1
if x[1] > 5:
ro5_failed += 1
x[8] = ro5_failed
return x
示例9: main
# 需要导入模块: from rdkit.Chem import Descriptors [as 别名]
# 或者: from rdkit.Chem.Descriptors import TPSA [as 别名]
def main():
cmd_input = docopt(cmd_str)
alert_file_name = cmd_input.get("--alerts") or pkg_resources.resource_filename('rd_filters',
"data/alert_collection.csv")
rf = RDFilters(alert_file_name)
if cmd_input.get("template"):
template_output_file = cmd_input.get("--out")
default_rule_template(rf.get_alert_sets(), template_output_file)
elif cmd_input.get("filter"):
input_file_name = cmd_input.get("--in")
rules_file_name = cmd_input.get("--rules") or pkg_resources.resource_filename('rd_filters', "data/rules.json")
rules_file_path = get_config_file(rules_file_name, "FILTER_RULES_DATA")
prefix_name = cmd_input.get("--prefix")
num_cores = cmd_input.get("--np") or mp.cpu_count()
num_cores = int(num_cores)
print("using %d cores" % num_cores, file=sys.stderr)
start_time = time.time()
p = Pool(num_cores)
input_data = [x.split() for x in open(input_file_name)]
input_data = [x for x in input_data if len(x) == 2]
rule_dict = read_rules(rules_file_path)
rule_list = [x.replace("Rule_", "") for x in rule_dict.keys() if x.startswith("Rule") and rule_dict[x]]
rule_str = " and ".join(rule_list)
print(f"Using alerts from {rule_str}", file=sys.stderr)
rf.build_rule_list(rule_list)
res = list(p.map(rf.evaluate, input_data))
df = pd.DataFrame(res, columns=["SMILES", "NAME", "FILTER", "MW", "LogP", "HBD", "HBA", "TPSA", "Rot"])
df_ok = df[
(df.FILTER == "OK") &
df.MW.between(*rule_dict["MW"]) &
df.LogP.between(*rule_dict["LogP"]) &
df.HBD.between(*rule_dict["HBD"]) &
df.HBA.between(*rule_dict["HBA"]) &
df.TPSA.between(*rule_dict["TPSA"]) &
df.Rot.between(*rule_dict["Rot"])
]
output_smiles_file = prefix_name + ".smi"
output_csv_file = prefix_name + ".csv"
df_ok[["SMILES", "NAME"]].to_csv(f"{output_smiles_file}", sep=" ", index=False, header=False)
print(f"Wrote SMILES for molecules passing filters to {output_smiles_file}", file=sys.stderr)
df.to_csv(f"{prefix_name}.csv", index=False)
print(f"Wrote detailed data to {output_csv_file}", file=sys.stderr)
num_input_rows = df.shape[0]
num_output_rows = df_ok.shape[0]
fraction_passed = "%.1f" % (num_output_rows / num_input_rows * 100.0)
print(f"{num_output_rows} of {num_input_rows} passed filters {fraction_passed}%", file=sys.stderr)
elapsed_time = "%.2f" % (time.time() - start_time)
print(f"Elapsed time {elapsed_time} seconds", file=sys.stderr)