当前位置: 首页>>代码示例>>Python>>正文


Python densecrf.DIAG_KERNEL属性代码示例

本文整理汇总了Python中pydensecrf.densecrf.DIAG_KERNEL属性的典型用法代码示例。如果您正苦于以下问题:Python densecrf.DIAG_KERNEL属性的具体用法?Python densecrf.DIAG_KERNEL怎么用?Python densecrf.DIAG_KERNEL使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在pydensecrf.densecrf的用法示例。


在下文中一共展示了densecrf.DIAG_KERNEL属性的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: dense_crf

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def dense_crf(probs, img=None, n_iters=10, n_classes=19,
              sxy_gaussian=(1, 1), compat_gaussian=4,
              sxy_bilateral=(49, 49), compat_bilateral=5,
              srgb_bilateral=(13, 13, 13)):
    import pydensecrf.densecrf as dcrf
    _, h, w, _ = probs.shape

    probs = probs[0].transpose(2, 0, 1).copy(order='C')  # Need a contiguous array.

    d = dcrf.DenseCRF2D(w, h, n_classes)  # Define DenseCRF model.
    U = -np.log(probs)  # Unary potential.
    U = U.reshape((n_classes, -1))  # Needs to be flat.
    d.setUnaryEnergy(U)
    d.addPairwiseGaussian(sxy=sxy_gaussian, compat=compat_gaussian,
                          kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
    if img is not None:
        assert (img.shape[1:3] == (h, w)), "The image height and width must coincide with dimensions of the logits."
        d.addPairwiseBilateral(sxy=sxy_bilateral, compat=compat_bilateral,
                               kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC,
                               srgb=srgb_bilateral, rgbim=img[0])
    Q = d.inference(n_iters)
    preds = np.array(Q, dtype=np.float32).reshape((n_classes, h, w)).transpose(1, 2, 0)
    return np.expand_dims(preds, 0) 
开发者ID:holyseven,项目名称:TransferLearningClassification,代码行数:25,代码来源:utils.py

示例2: get_crf_img

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def get_crf_img(inputs, outputs):
    for i in range(outputs.shape[0]):
        img = inputs[i]
        softmax_prob = outputs[i]
        unary = unary_from_softmax(softmax_prob)
        unary = np.ascontiguousarray(unary)
        d = dcrf.DenseCRF(img.shape[0] * img.shape[1], 2)
        d.setUnaryEnergy(unary)
        feats = create_pairwise_gaussian(sdims=(10,10), shape=img.shape[:2])
        d.addPairwiseEnergy(feats, compat=3, kernel=dcrf.DIAG_KERNEL,
                            normalization=dcrf.NORMALIZE_SYMMETRIC)
        feats = create_pairwise_bilateral(sdims=(50,50), schan=(20,20,20),
                                          img=img, chdim=2)
        d.addPairwiseEnergy(feats, compat=10, kernel=dcrf.DIAG_KERNEL,
                            normalization=dcrf.NORMALIZE_SYMMETRIC)
        Q = d.inference(5)
        res = np.argmax(Q, axis=0).reshape((img.shape[0], img.shape[1]))
        if i == 0:
            crf = np.expand_dims(res,axis=0)
        else:
            res = np.expand_dims(res,axis=0)
            crf = np.concatenate((crf,res),axis=0)
    return crf 
开发者ID:cv-lee,项目名称:BraTs,代码行数:25,代码来源:utils.py

示例3: getCRFResult

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def getCRFResult(result, img):

    _d = dcrf.DenseCRF2D(config.img_height, config.img_width, config.classes)
    result = result[0]
    label = result.reshape((config.img_height, config.img_width, config.classes)).transpose((2, 0, 1))
    U = unary_from_softmax(label)
    _d.setUnaryEnergy(U)
    _d.addPairwiseGaussian(sxy=(3, 3), compat=3, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
    _d.addPairwiseBilateral(sxy=(80, 80), srgb=(13, 13, 13),
        rgbim=img,
        compat=10,
        kernel=dcrf.DIAG_KERNEL,
        normalization=dcrf.NORMALIZE_SYMMETRIC
    )
    Q = _d.inference(1)
    return np.argmax(Q, axis=0).reshape((config.img_height, config.img_width)) 
开发者ID:mrm-xiefan,项目名称:lunania-ai,代码行数:18,代码来源:fcn.py

示例4: apply_crf

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def apply_crf(input_image, input_prob, theta_a, theta_b, theta_r, mu1, mu2):
    n_slices = input_image.shape[2]
    output = np.zeros(input_image.shape)
    for slice_id in range(n_slices):
        image = input_image[:,:,slice_id]
        prob = input_prob[:,:,slice_id,:]

        n_pixel = image.shape[0] * image.shape[1]
        n_class = prob.shape[-1]

        P = np.transpose(prob, axes=(2, 0, 1))

        # Setup the CRF model
        d = dcrf.DenseCRF(n_pixel, n_class)

        # Set unary potentials (negative log probability)
        U = - np.log(P + 1e-10)
        U = np.ascontiguousarray(U.reshape((n_class, n_pixel)))
        d.setUnaryEnergy(U)

        # Set edge potential
        # This creates the color-dependent features and then add them to the CRF
        feats = create_pairwise_bilateral(sdims=(theta_a, theta_a), schan=(theta_b,), img=image, chdim=-1)
        d.addPairwiseEnergy(feats, compat=mu1, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)

        # This creates the color-independent features and then add them to the CRF
        feats = create_pairwise_gaussian(sdims=(theta_r, theta_r), shape=image.shape)
        d.addPairwiseEnergy(feats, compat=mu2, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)

        # Perform the inference
        Q = d.inference(5)
        res = np.argmax(Q, axis=0).astype('float32')
        res = np.reshape(res, image.shape).astype(dtype='int8')
        output[:,:,slice_id] = res

    return output 
开发者ID:ozan-oktay,项目名称:Attention-Gated-Networks,代码行数:38,代码来源:post_process_crf.py

示例5: crf_PIL

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def crf_PIL(original_image, annotated_image,output_image, use_2d = True):

    annotated_labels = annotated_image.flatten()
    colors,labels = np.unique(annotated_labels, return_inverse=True)
    print(len(labels))
    print(labels)
    print(len(colors))
    print(colors)
    #Setting up the CRF model
    if use_2d :
        d = dcrf.DenseCRF2D(original_image.shape[1], original_image.shape[0], len(colors))

        # get unary potentials (neg log probability)
        U = unary_from_labels(labels, len(colors), gt_prob=0.7, zero_unsure=False)
        d.setUnaryEnergy(U)

        # This adds the color-independent term, features are the locations only.
        d.addPairwiseGaussian(sxy=(3, 3), compat=3, kernel=dcrf.DIAG_KERNEL,
                          normalization=dcrf.NORMALIZE_SYMMETRIC)

        # This adds the color-dependent term, i.e. features are (x,y,r,g,b).
        d.addPairwiseBilateral(sxy=(80, 80), srgb=(13, 13, 13), rgbim=original_image,
                           compat=10,
                           kernel=dcrf.DIAG_KERNEL,
                           normalization=dcrf.NORMALIZE_SYMMETRIC)
        
    #Run Inference for 5 steps 
    Q = d.inference(5)

    # Find out the most probable class for each pixel.
    MAP = np.argmax(Q, axis=0)
    print(MAP.shape)

    # C将地图(标签)转换回相应的颜色并保存图像。
    # 注意,这里不再有“未知”,不管我们一开始拥有什么。
    MAP = MAP.reshape(original_image.shape[1],original_image.shape[0],1)
    cv2.imwrite(output_image,MAP)
    #MAP = array_to_img(MAP)
    #MAP.save(output_image)
    return MAP 
开发者ID:1044197988,项目名称:Semantic-segmentation-of-remote-sensing-images,代码行数:42,代码来源:CRF.py

示例6: postprocessing_pydensecrf

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def postprocessing_pydensecrf(logits):
    # probs of shape 3d image per class: Nb_classes x Height x Width x Depth
    shape = logits.shape[1:]
    new_image = np.empty(shape)
    d = dcrf.DenseCRF(np.prod(shape), logits.shape[0])
    U = unary_from_softmax(logits)
    d.setUnaryEnergy(U)
    feats = create_pairwise_gaussian(sdims=(1.0, 1.0, 1.0), shape=shape)
    d.addPairwiseEnergy(feats, compat=3, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
    Q = d.inference(5) 
    new_image = np.argmax(Q, axis=0).reshape((shape[0], shape[1],shape[2]))
    return new_image 
开发者ID:koriavinash1,项目名称:DeepBrainSeg,代码行数:14,代码来源:helper.py

示例7: dense_crf

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def dense_crf(real_image, probs, iter_steps=10):
	"""
	Args:
		real_image  		:   the real world RGB image, numpy array, shape [H, W, 3]
		probs       		:   the predicted probability in (0, 1), shape [H, W, C]
		iter_steps			:	the iterative steps
	Returns:
		return the refined segmentation map in [0,1,2,...,N_label]
	ref:
		https://github.com/milesial/Pytorch-UNet/blob/master/utils/crf.py
		https://github.com/lucasb-eyer/pydensecrf/blob/master/examples/Non%20RGB%20Example.ipynb
	"""
	# converting real -world image to RGB if it is gray
	if(len(real_image.shape) < 3):
		#real_image = cv2.cvtColor(real_image, cv2.COLOR_GRAY2RGB)
		raise ValueError("The input image should be RGB image.")
	# shape, and transpose to [C, H, W]
	H, W, N_classes = probs.shape[0], probs.shape[1], probs.shape[2]
	probs = probs.transpose((2, 0, 1))
	# get unary potentials from the probability distribution
	unary = unary_from_softmax(probs)
	#unary = np.ascontiguousarray(unary)
	# CRF
	d = dcrf.DenseCRF2D(W, H, N_classes)
	d.setUnaryEnergy(unary)
	# add pairwise potentials
	#real_image = np.ascontiguousarray(real_image)
	d.addPairwiseGaussian(sxy=3, compat=3)
	d.addPairwiseBilateral(sxy=30, srgb=13, rgbim=real_image, compat=10)
	#d.addPairwiseGaussian(sxy=(3, 3), compat=3, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
	#d.addPairwiseBilateral(sxy=(80, 80), srgb=(13, 13, 13), rgbim=real_image,
	#						compat=10, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
	# inference
	Q = d.inference(iter_steps)
	Q = np.argmax(np.array(Q), axis=0).reshape((H, W))
	return Q 
开发者ID:ZJULearning,项目名称:RMI,代码行数:38,代码来源:crf.py

示例8: post_process_crf

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def post_process_crf(image, final_probabilities, num_cl):
	softmax = final_probabilities.squeeze()
	softmax = softmax.transpose((2, 0, 1))

	# The input should be the negative of the logarithm of probability values
	# Look up the definition of the unary_from_softmax for more information
	unary = unary_from_softmax(softmax, scale=None, clip=1e-5)

	# The inputs should be C-continious -- we are using Cython wrapper
	unary = np.ascontiguousarray(unary)

	d = dcrf.DenseCRF(image.shape[0] * image.shape[1], num_cl)

	d.setUnaryEnergy(unary)

	# This potential penalizes small pieces of segmentation that are
	# spatially isolated -- enforces more spatially consistent segmentations
	feats = create_pairwise_gaussian(sdims=(10, 10), shape=image.shape[:2])

	d.addPairwiseEnergy(feats, compat=3,
                    	kernel=dcrf.DIAG_KERNEL,
                    	normalization=dcrf.NORMALIZE_SYMMETRIC)

	# This creates the color-dependent features --
	# because the segmentation that we get from CNN are too coarse
	# and we can use local color features to refine them
	feats = create_pairwise_bilateral(sdims=(50, 50), schan=(20, 20, 20),
									img=image, chdim=2)

	d.addPairwiseEnergy(feats, compat=10,
                     	kernel=dcrf.DIAG_KERNEL,
                     	normalization=dcrf.NORMALIZE_SYMMETRIC)
	Q = d.inference(10)
	res = np.argmax(Q, axis=0).reshape((image.shape[0], image.shape[1]))

	return res 
开发者ID:DeepSegment,项目名称:FCN-GoogLeNet,代码行数:38,代码来源:post_crf.py

示例9: crf

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def crf(original_image, output, nb_iterations=1, sxy1=(3, 3), sxy2=(80, 80), compat=3, srgb=(13, 13, 13)):
    """

    Parameters explained https://github.com/lucasb-eyer/pydensecrf

    Parameters
    ----------
    original_image : H x W x RGB
         [0:255]
    output : C x H x W
        float confidence of the network


    Returns
    -------
    H x W
        map of the selected labels, [0..C] where C is the number of classes
    """
    import pydensecrf.densecrf as dcrf
    from pydensecrf.utils import unary_from_softmax

    original_image = original_image.astype(np.uint8)

    # The output needs to be between 0 and 1
    if np.max(output) > 1 or np.min(output) < 0:
        output = softmax(output, axis=0)

    # Make the array contiguous in memory
    output = output.copy(order='C')

    d = dcrf.DenseCRF2D(original_image.shape[1], original_image.shape[0], output.shape[0])
    U = unary_from_softmax(output)
    d.setUnaryEnergy(U)

    # This adds the color-independent term, features are the locations only.
    d.addPairwiseGaussian(sxy=sxy1, compat=compat, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)

    # This adds the color-dependent term, i.e. features are (x,y,r,g,b).
    # im is an image-array, e.g. im.dtype == np.uint8 and im.shape == (640,480,3)
    d.addPairwiseBilateral(sxy=sxy2,
                           srgb=srgb,
                           rgbim=original_image,
                           compat=compat*3,
                           kernel=dcrf.DIAG_KERNEL,
                           normalization=dcrf.NORMALIZE_SYMMETRIC)

    Q = d.inference(nb_iterations)

    return np.argmax(Q, axis=0).reshape(original_image.shape[0], original_image.shape[1]) 
开发者ID:DIVA-DIA,项目名称:DeepDIVA,代码行数:51,代码来源:post_process.py

示例10: dense_crf

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def dense_crf(probs, img=None, n_iters=10,
              sxy_gaussian=(3, 3), compat_gaussian=3,
              kernel_gaussian=dcrf.DIAG_KERNEL,
              normalisation_gaussian=dcrf.NORMALIZE_SYMMETRIC,
              sxy_bilateral=(49, 49), compat_bilateral=4,
              srgb_bilateral=(5, 5, 5),
              kernel_bilateral=dcrf.DIAG_KERNEL,
              normalisation_bilateral=dcrf.NORMALIZE_SYMMETRIC):
    """DenseCRF over unnormalised predictions.
       More details on the arguments at https://github.com/lucasb-eyer/pydensecrf.

    Args:
      probs: class probabilities per pixel.
      img: if given, the pairwise bilateral potential on raw RGB values will be computed.
      n_iters: number of iterations of MAP inference.
      sxy_gaussian: standard deviations for the location component of the colour-independent term.
      compat_gaussian: label compatibilities for the colour-independent term (can be a number, a 1D array, or a 2D array).
      kernel_gaussian: kernel precision matrix for the colour-independent term (can take values CONST_KERNEL, DIAG_KERNEL, or FU
LL_KERNEL).
      normalisation_gaussian: normalisation for the colour-independent term (possible values are NO_NORMALIZATION, NORMALIZE_BEF
ORE, NORMALIZE_AFTER, NORMALIZE_SYMMETRIC).
      sxy_bilateral: standard deviations for the location component of the colour-dependent term.
      compat_bilateral: label compatibilities for the colour-dependent term (can be a number, a 1D array, or a 2D array).
      srgb_bilateral: standard deviations for the colour component of the colour-dependent term.
      kernel_bilateral: kernel precision matrix for the colour-dependent term (can take values CONST_KERNEL, DIAG_KERNEL, or FUL
L_KERNEL).
      normalisation_bilateral: normalisation for the colour-dependent term (possible values are NO_NORMALIZATION, NORMALIZE_BEFO
RE, NORMALIZE_AFTER, NORMALIZE_SYMMETRIC).

    Returns:
      Refined predictions after MAP inference.
    """
    _, h, w, _ = probs.shape

    probs = probs[0].transpose(2, 0, 1).copy(order='C') # Need a contiguous array.

    d = dcrf.DenseCRF2D(w, h, n_classes) # Define DenseCRF model.
    U = -np.log(probs) # Unary potential.
    U = U.reshape((n_classes, -1)) # Needs to be flat.
    d.setUnaryEnergy(U)
    d.addPairwiseGaussian(sxy=sxy_gaussian, compat=compat_gaussian,
                          kernel=kernel_gaussian, normalization=normalisation_gaussian)
    if img is not None:
        assert(img.shape[1:3] == (h, w)), "The image height and width must coincide with dimensions of the logits."
        d.addPairwiseBilateral(sxy=sxy_bilateral, compat=compat_bilateral,
                               kernel=kernel_bilateral, normalization=normalisation_bilateral,
                               srgb=srgb_bilateral, rgbim=img[0])
    Q = d.inference(n_iters)
    preds = np.array(Q, dtype=np.float32).reshape((n_classes, h, w)).transpose(1, 2, 0)
    return np.expand_dims(preds, 0) 
开发者ID:arslan-chaudhry,项目名称:dcsp_segmentation,代码行数:52,代码来源:utils.py

示例11: dense_crf

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def dense_crf(probs, img=None, n_iters=10,
              sxy_gaussian=(1, 1), compat_gaussian=4,
              kernel_gaussian=dcrf.DIAG_KERNEL,
              normalisation_gaussian=dcrf.NORMALIZE_SYMMETRIC,
              sxy_bilateral=(49, 49), compat_bilateral=5,
              srgb_bilateral=(13, 13, 13),
              kernel_bilateral=dcrf.DIAG_KERNEL,
              normalisation_bilateral=dcrf.NORMALIZE_SYMMETRIC):
    """DenseCRF over unnormalised predictions.
       More details on the arguments at https://github.com/lucasb-eyer/pydensecrf.

    Args:
      probs: class probabilities per pixel.
      img: if given, the pairwise bilateral potential on raw RGB values will be computed.
      n_iters: number of iterations of MAP inference.
      sxy_gaussian: standard deviations for the location component of the colour-independent term.
      compat_gaussian: label compatibilities for the colour-independent term (can be a number, a 1D array, or a 2D array).
      kernel_gaussian: kernel precision matrix for the colour-independent term (can take values CONST_KERNEL, DIAG_KERNEL, or FULL_KERNEL).
      normalisation_gaussian: normalisation for the colour-independent term (possible values are NO_NORMALIZATION, NORMALIZE_BEFORE, NORMALIZE_AFTER, NORMALIZE_SYMMETRIC).
      sxy_bilateral: standard deviations for the location component of the colour-dependent term.
      compat_bilateral: label compatibilities for the colour-dependent term (can be a number, a 1D array, or a 2D array).
      srgb_bilateral: standard deviations for the colour component of the colour-dependent term.
      kernel_bilateral: kernel precision matrix for the colour-dependent term (can take values CONST_KERNEL, DIAG_KERNEL, or FULL_KERNEL).
      normalisation_bilateral: normalisation for the colour-dependent term (possible values are NO_NORMALIZATION, NORMALIZE_BEFORE, NORMALIZE_AFTER, NORMALIZE_SYMMETRIC).

    Returns:
      Refined predictions after MAP inference.
    """
    #     _, h, w, _ = probs.shape
    _, h, w, n_classes = probs.shape

    probs = probs[0].transpose(2, 0, 1).copy(order='C')  # Need a contiguous array.

    d = dcrf.DenseCRF2D(w, h, n_classes)  # Define DenseCRF model.
    U = -np.log(probs)  # Unary potential.x
    U = U.reshape((n_classes, -1))  # Needs to be flat.
    d.setUnaryEnergy(U)
    d.addPairwiseGaussian(sxy=sxy_gaussian, compat=compat_gaussian,
                          kernel=kernel_gaussian, normalization=normalisation_gaussian)
    if img is not None:
        assert (img.shape[1:3] == (h, w)), "The image height and width must coincide with dimensions of the logits."
        d.addPairwiseBilateral(sxy=sxy_bilateral, compat=compat_bilateral,
                               kernel=kernel_bilateral, normalization=normalisation_bilateral,
                               srgb=srgb_bilateral, rgbim=img[0])
    Q = d.inference(n_iters)
    preds = np.array(Q, dtype=np.float32).reshape((n_classes, h, w)).transpose(1, 2, 0)
    return np.expand_dims(preds, 0) 
开发者ID:mil-tokyo,项目名称:MCD_DA,代码行数:49,代码来源:crf.py

示例12: crf

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def crf(original_image, annotated_image,output_image, use_2d = True):
        
    ##将注释RGB颜色转换为单个32位整数
    #annotated_label = annotated_image[:,:,0] + (annotated_image[:,:,1]<<8) + (annotated_image[:,:,2]<<16)
    #print(annotated_label.shape)
    
    # 将32位整数颜色转换为0、1、2、…标签。
    colors, labels = np.unique(annotated_label, return_inverse=True)
    print(len(labels))
    print(labels)
    print(len(colors))
    print(colors)
    n_labels = len(set(labels.flat))
    
    #创建一个32位颜色的映射
##    colorize = np.empty((len(colors), 3), np.uint8)
##    colorize[:,0] = (colors & 0x0000FF)
##    colorize[:,1] = (colors & 0x00FF00) >> 8
##    colorize[:,2] = (colors & 0xFF0000) >> 16
##    
##    #在带注释的图像中不给出任何类标签
##    n_labels = len(set(labels.flat)) 
##    
##    print("图像中没有标签")
##    print(n_labels)
    
    
    #Setting up the CRF model
    if use_2d :
        d = dcrf.DenseCRF2D(original_image.shape[1]*original_image.shape[0], n_labels)

        # get unary potentials (neg log probability)
        U = unary_from_labels(labels, n_labels, gt_prob=0.7, zero_unsure=False)
        d.setUnaryEnergy(U)

        # This adds the color-independent term, features are the locations only.
        d.addPairwiseGaussian(sxy=(3, 3), compat=3, kernel=dcrf.DIAG_KERNEL,
                          normalization=dcrf.NORMALIZE_SYMMETRIC)

        # This adds the color-dependent term, i.e. features are (x,y,r,g,b).
        d.addPairwiseBilateral(sxy=(80, 80), srgb=(13, 13, 13), rgbim=original_image,
                           compat=10,
                           kernel=dcrf.DIAG_KERNEL,
                           normalization=dcrf.NORMALIZE_SYMMETRIC)
        
    #Run Inference for 5 steps 
    Q = d.inference(5)

    # Find out the most probable class for each pixel.
    MAP = np.argmax(Q, axis=0)

    # C将地图(标签)转换回相应的颜色并保存图像。
    # 注意,这里不再有“未知”,不管我们一开始拥有什么。
    MAP = colorize[MAP,:]
    MAP = MAP.reshape(original_image.shape)
    MAP = array_to_img(MAP)
    MAP.save(output_image)
    return MAP 
开发者ID:1044197988,项目名称:Semantic-segmentation-of-remote-sensing-images,代码行数:60,代码来源:CRF.py

示例13: dense_crf

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def dense_crf(probs, img=None, n_iters=10,
              sxy_gaussian=(3, 3), compat_gaussian=3,
              kernel_gaussian=dcrf.DIAG_KERNEL,
              normalisation_gaussian=dcrf.NORMALIZE_SYMMETRIC,
              sxy_bilateral=(49, 49), compat_bilateral=4,
              srgb_bilateral=(5, 5, 5),
              kernel_bilateral=dcrf.DIAG_KERNEL,
              normalisation_bilateral=dcrf.NORMALIZE_SYMMETRIC):
    """DenseCRF over unnormalised predictions.
       More details on the arguments at https://github.com/lucasb-eyer/pydensecrf.
    Args:
      probs: class probabilities per pixel.
      img: if given, the pairwise bilateral potential on raw RGB values will be computed.
      n_iters: number of iterations of MAP inference.
      sxy_gaussian: standard deviations for the location component of the colour-independent term.
      compat_gaussian: label compatibilities for the colour-independent term (can be a number, a 1D array, or a 2D array).
      kernel_gaussian: kernel precision matrix for the colour-independent term (can take values CONST_KERNEL, DIAG_KERNEL, or FULL_KERNEL).
      normalisation_gaussian: normalisation for the colour-independent term (possible values are NO_NORMALIZATION, NORMALIZE_BEFORE, NORMALIZE_AFTER, NORMALIZE_SYMMETRIC).
      sxy_bilateral: standard deviations for the location component of the colour-dependent term.
      compat_bilateral: label compatibilities for the colour-dependent term (can be a number, a 1D array, or a 2D array).
      srgb_bilateral: standard deviations for the colour component of the colour-dependent term.
      kernel_bilateral: kernel precision matrix for the colour-dependent term (can take values CONST_KERNEL, DIAG_KERNEL, or FULL_KERNEL).
      normalisation_bilateral: normalisation for the colour-dependent term (possible values are NO_NORMALIZATION, NORMALIZE_BEFORE, NORMALIZE_AFTER, NORMALIZE_SYMMETRIC).
    Returns:
      Refined predictions after MAP inference.
    """
    h, w, n_classes = probs.shape
    print(probs.shape, img.shape)

    probs = probs.transpose(2, 0, 1).copy(order='C') # Need a contiguous array.

    d = dcrf.DenseCRF2D(w, h, n_classes) # Define DenseCRF model.
    U = -np.log(probs) # Unary potential.
    U = U.reshape((n_classes, -1)) # Needs to be flat.
    d.setUnaryEnergy(U)
    d.addPairwiseGaussian(sxy=sxy_gaussian, compat=compat_gaussian,
                          kernel=kernel_gaussian, normalization=normalisation_gaussian)
    if img is not None:
        assert(img.shape[0:2] == (h, w)), "The image height and width must coincide with dimensions of the logits."
        d.addPairwiseBilateral(sxy=sxy_bilateral, compat=compat_bilateral,
                               kernel=kernel_bilateral, normalization=normalisation_bilateral,
                               srgb=srgb_bilateral, rgbim=img)
    Q = d.inference(n_iters)
    preds = np.array(Q, dtype=np.float32).reshape((n_classes, h, w)).transpose(1, 2, 0)
    return probs.transpose(1, 2, 0) 
开发者ID:speedinghzl,项目名称:DSRG,代码行数:47,代码来源:utils.py

示例14: dense_crf

# 需要导入模块: from pydensecrf import densecrf [as 别名]
# 或者: from pydensecrf.densecrf import DIAG_KERNEL [as 别名]
def dense_crf(probs, img=None, n_iters=10, 
              sxy_gaussian=(1, 1), compat_gaussian=4,
              kernel_gaussian=dcrf.DIAG_KERNEL,
              normalisation_gaussian=dcrf.NORMALIZE_SYMMETRIC,
              sxy_bilateral=(49, 49), compat_bilateral=5,
              srgb_bilateral=(13, 13, 13),
              kernel_bilateral=dcrf.DIAG_KERNEL,
              normalisation_bilateral=dcrf.NORMALIZE_SYMMETRIC):
    """DenseCRF over unnormalised predictions.
       More details on the arguments at https://github.com/lucasb-eyer/pydensecrf.
    
    Args:
      probs: class probabilities per pixel.
      img: if given, the pairwise bilateral potential on raw RGB values will be computed.
      n_iters: number of iterations of MAP inference.
      sxy_gaussian: standard deviations for the location component of the colour-independent term.
      compat_gaussian: label compatibilities for the colour-independent term (can be a number, a 1D array, or a 2D array).
      kernel_gaussian: kernel precision matrix for the colour-independent term (can take values CONST_KERNEL, DIAG_KERNEL, or FULL_KERNEL).
      normalisation_gaussian: normalisation for the colour-independent term (possible values are NO_NORMALIZATION, NORMALIZE_BEFORE, NORMALIZE_AFTER, NORMALIZE_SYMMETRIC).
      sxy_bilateral: standard deviations for the location component of the colour-dependent term.
      compat_bilateral: label compatibilities for the colour-dependent term (can be a number, a 1D array, or a 2D array).
      srgb_bilateral: standard deviations for the colour component of the colour-dependent term.
      kernel_bilateral: kernel precision matrix for the colour-dependent term (can take values CONST_KERNEL, DIAG_KERNEL, or FULL_KERNEL).
      normalisation_bilateral: normalisation for the colour-dependent term (possible values are NO_NORMALIZATION, NORMALIZE_BEFORE, NORMALIZE_AFTER, NORMALIZE_SYMMETRIC).
      
    Returns:
      Refined predictions after MAP inference.
    """
    _, h, w, _ = probs.shape
    
    probs = probs[0].transpose(2, 0, 1).copy(order='C') # Need a contiguous array.
    
    d = dcrf.DenseCRF2D(w, h, n_classes) # Define DenseCRF model.
    U = -np.log(probs) # Unary potential.
    U = U.reshape((n_classes, -1)) # Needs to be flat.
    d.setUnaryEnergy(U)
    d.addPairwiseGaussian(sxy=sxy_gaussian, compat=compat_gaussian,
                          kernel=kernel_gaussian, normalization=normalisation_gaussian)
    if img is not None:
        assert(img.shape[1:3] == (h, w)), "The image height and width must coincide with dimensions of the logits."
        d.addPairwiseBilateral(sxy=sxy_bilateral, compat=compat_bilateral,
                               kernel=kernel_bilateral, normalization=normalisation_bilateral,
                               srgb=srgb_bilateral, rgbim=img[0])
    Q = d.inference(n_iters)
    preds = np.array(Q, dtype=np.float32).reshape((n_classes, h, w)).transpose(1, 2, 0)
    return np.expand_dims(preds, 0) 
开发者ID:muyang0320,项目名称:tensorflow-deeplab-resnet-crf,代码行数:48,代码来源:utils.py


注:本文中的pydensecrf.densecrf.DIAG_KERNEL属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。