当前位置: 首页>>代码示例>>Python>>正文


Python mapping.NP_TYPE_TO_TENSOR_TYPE属性代码示例

本文整理汇总了Python中onnx.mapping.NP_TYPE_TO_TENSOR_TYPE属性的典型用法代码示例。如果您正苦于以下问题:Python mapping.NP_TYPE_TO_TENSOR_TYPE属性的具体用法?Python mapping.NP_TYPE_TO_TENSOR_TYPE怎么用?Python mapping.NP_TYPE_TO_TENSOR_TYPE使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在onnx.mapping的用法示例。


在下文中一共展示了mapping.NP_TYPE_TO_TENSOR_TYPE属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: perform_import_export

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def perform_import_export(graph_proto, input_shape):
        """ Import ONNX model to mxnet model and then export to ONNX model
            and then import it back to mxnet for verifying the result"""
        graph = GraphProto()

        sym, arg_params, aux_params = graph.from_onnx(graph_proto)

        params = {}
        params.update(arg_params)
        params.update(aux_params)
        # exporting to onnx graph proto format
        converter = MXNetGraph()
        graph_proto = converter.create_onnx_graph_proto(sym, params, in_shape=input_shape, in_type=mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype('float32')])

        # importing back to MXNET for verifying result.
        sym, arg_params, aux_params = graph.from_onnx(graph_proto)

        return sym, arg_params, aux_params 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:20,代码来源:backend.py

示例2: np_dtype_to_tensor_type_name

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def np_dtype_to_tensor_type_name(data_type):  # type: (np.dtype) -> str
    """Return TensorProto type name respective to provided numpy dtype.

    :param data_type: Numpy dtype we want to convert.
    :return: String representation of TensorProto type name.
    """
    return TensorProto.DataType.Name(NP_TYPE_TO_TENSOR_TYPE[data_type]) 
开发者ID:NervanaSystems,项目名称:ngraph-onnx,代码行数:9,代码来源:types.py

示例3: np_dtype_to_tensor_type

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def np_dtype_to_tensor_type(data_type):  # type: (np.type) -> int
    """Return TensorProto type for provided numpy dtype.

    :param data_type: Numpy data type object.
    :return: TensorProto.DataType enum value for corresponding type.
    """
    return NP_TYPE_TO_TENSOR_TYPE[data_type] 
开发者ID:NervanaSystems,项目名称:ngraph-onnx,代码行数:9,代码来源:types.py

示例4: rewrite_onnx_tensor_type

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def rewrite_onnx_tensor_type(xtensor_type, new_type):
    if new_type.dtype is not None:
        xtensor_type.elem_type = mapping.NP_TYPE_TO_TENSOR_TYPE[new_type.dtype]
    if new_type.shape is not None:
        xtensor_type.shape.Clear()
        for d in new_type.shape:
            xtensor_type.shape.dim.add().dim_value = d 
开发者ID:pfnet-research,项目名称:chainer-compiler,代码行数:9,代码来源:input_rewriter.py

示例5: version_11

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def version_11(cls, node, **kwargs):
    default_dtype = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype('float32')]
    dtype = data_type.onnx2tf(node.attrs.get("dtype", default_dtype))

    ragged = tf.RaggedTensor.from_row_lengths(values=[], row_lengths=[])
    sparse = tf.cast(ragged.to_sparse(), dtype)
    return [tf.RaggedTensor.from_sparse(sparse)] 
开发者ID:onnx,项目名称:onnx-tensorflow,代码行数:9,代码来源:sequence_empty.py

示例6: tf2onnx

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def tf2onnx(dtype):
  if isinstance(dtype, Number):
    tf_dype = tf.as_dtype(dtype)
  elif isinstance(dtype, tf.DType):
    tf_dype = dtype
  elif isinstance(dtype, list):
    return [tf2onnx(t) for t in dtype]
  else:
    raise RuntimeError("dtype should be number or tf.DType.")

  # Usually, tf2onnx is done via tf_type->numpy_type->onnx_type
  # to leverage existing type conversion infrastructure;
  # However, we need to intercept the string type early because
  # lowering tf.string type to numpy dtype results in loss of
  # information. <class 'object'> is returned instead of the
  # numpy string type desired.
  if tf_dype is tf.string:
    return TensorProto.STRING

  onnx_dtype = None
  try:
    onnx_dtype = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(
        tf_dype.as_numpy_dtype)]
  finally:
    if onnx_dtype is None:
      common.logger.warning(
          "Can't convert tf dtype {} to ONNX dtype. Return 0 (TensorProto.UNDEFINED)."
          .format(tf_dype))
      onnx_dtype = TensorProto.UNDEFINED
    return onnx_dtype 
开发者ID:onnx,项目名称:onnx-tensorflow,代码行数:32,代码来源:data_type.py

示例7: any_dtype_to_onnx_dtype

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def any_dtype_to_onnx_dtype(np_dtype=None, tf_dtype=None, onnx_dtype=None):
  dtype_mask = [1 if val else 0 for val in [np_dtype, tf_dtype, onnx_dtype]]
  num_type_set = sum(dtype_mask)
  assert num_type_set == 1, "One and only one type must be set. However, {} set.".format(
      sum(num_type_set))

  if np_dtype:
    onnx_dtype = mapping.NP_TYPE_TO_TENSOR_TYPE[np_dtype]
  if tf_dtype:
    onnx_dtype = tf2onnx(tf_dtype)

  return onnx_dtype 
开发者ID:onnx,项目名称:onnx-tensorflow,代码行数:14,代码来源:data_type.py

示例8: from_array

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def from_array(arr, name=None):  # type: (np.ndarray[Any], Optional[Text]) -> TensorProto
    """Converts a numpy array to a tensor def.

    Inputs:
        arr: a numpy array.
        name: (optional) the name of the tensor.
    Returns:
        tensor_def: the converted tensor def.
    """
    tensor = TensorProto()
    tensor.dims.extend(arr.shape)
    if name:
        tensor.name = name

    if arr.dtype == np.object:
        # Special care for strings.
        raise NotImplementedError("Need to properly implement string.")
    # For numerical types, directly use numpy raw bytes.
    try:
        dtype = mapping.NP_TYPE_TO_TENSOR_TYPE[arr.dtype]
    except KeyError:
        raise RuntimeError(
            "Numpy data type not understood yet: {}".format(str(arr.dtype)))
    tensor.data_type = dtype
    tensor.raw_data = arr.tobytes()  # note: tobytes() is only after 1.9.

    return tensor 
开发者ID:mlperf,项目名称:training_results_v0.6,代码行数:29,代码来源:numpy_helper.py

示例9: _argminmax_nodes

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def _argminmax_nodes(op_name, func, input_names, output_names, context):
    gb = onnx_helper.GraphBuilder()
    target_input_names = input_names
    axis = func.axis
    if axis is None:
        shape_name = context.add_const(np.array([-1], dtype=np.int64), 'shape')
        input_names.append(shape_name)
        target_input_names = [gb.op('Reshape', input_names)]
        axis = 0
    out = gb.op(op_name, target_input_names, axis=axis, keepdims=0)
    # Chainer's ArgMax always return value as int32
    # Cast spec is changed from opset6, this logic does not support ~opset5
    gb.op('Cast', [out], to=NP_TYPE_TO_TENSOR_TYPE[np.dtype('int32')])
    return gb.nodes(output_names) 
开发者ID:chainer,项目名称:chainer,代码行数:16,代码来源:math.py

示例10: convert_Cast

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def convert_Cast(func, opset_version, input_names, output_names, context):
    typ = func.type if isinstance(func.type, np.dtype) else np.dtype(func.type)
    if opset_version == 1:
        return onnx_helper.make_node(
            'Cast', input_names, output_names,
            to=TENSOR_TYPE_TO_NAME[NP_TYPE_TO_TENSOR_TYPE[typ]]
        ),
    elif opset_version == 6:
        return onnx_helper.make_node(
            'Cast', input_names, output_names,
            to=NP_TYPE_TO_TENSOR_TYPE[typ]
        ), 
开发者ID:chainer,项目名称:chainer,代码行数:14,代码来源:array.py

示例11: convert_SelectItem

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def convert_SelectItem(func, opset_version, input_names, output_names,
                       context):
    gb = onnx_helper.GraphBuilder()

    if opset_version >= 11:
        t = gb.op('Unsqueeze', [input_names[1]], axes=[1])
        out = gb.op('GatherElements', [input_names[0], t], axis=1)
        gb.op('Squeeze', [out], axes=[1])
    else:
        data, target_idxs = input_names
        target_idxs = gb.op('Cast', [target_idxs],
                            to=NP_TYPE_TO_TENSOR_TYPE[np.dtype('int64')])
        n_rows = gb.op('Shape', [target_idxs])

        # This is an equivalent of using Range.
        one_1 = onnx.helper.make_tensor(
            'one_1', onnx.TensorProto.FLOAT, [1], [1])
        ones = gb.op('ConstantOfShape', [n_rows], value=one_1)
        row_idxs = gb.op('Squeeze', [gb.op('NonZero', [ones])])

        data_shape = gb.op('Shape', [data])
        one_2 = context.add_const(np.array([1]), 'one_2')
        n_cols = gb.op('Gather', [data_shape, one_2], axis=0)

        data = gb.op('Squeeze', [gb.op('Flatten', [data], axis=2)])
        target_idxs = gb.op(
            'Add', [target_idxs, gb.op('Mul', [row_idxs, n_cols])])
        gb.op('Gather', [data, target_idxs], axis=0)

    return gb.nodes(output_names) 
开发者ID:chainer,项目名称:chainer,代码行数:32,代码来源:array.py

示例12: to_onnx_type

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def to_onnx_type(dt_type):
    # TensorFlow data types integrate seamlessly with numpy
    return mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dt_type.as_numpy_dtype)] 
开发者ID:onnx,项目名称:keras-onnx,代码行数:5,代码来源:_tf_utils.py

示例13: from_mxnet

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def from_mxnet(model_file, weight_file, input_shape, input_type, log=False):
    mx_weights = mx.ndarray.load(weight_file)
    with open(model_file, 'r') as f:
        graph = json.loads(f.read())["nodes"]
    converter = MxNetToONNXConverter() 
    onnx_graph = converter.convert_mx2onnx_graph(graph, mx_weights, input_shape, mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(input_type)], log=log)
    onnx_model = helper.make_model(onnx_graph)
    return onnx_model 
开发者ID:NVIDIA,项目名称:mxnet_to_onnx,代码行数:10,代码来源:conversion_helpers.py

示例14: convert_weights_and_inputs

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def convert_weights_and_inputs(node, **kwargs):
    name = node["name"]
    if looks_like_weight(name):
        weights = kwargs["weights"]
        initializer = kwargs["initializer"]
        weights = kwargs["weights"]
        np_arr = weights[name]
        data_type = mapping.NP_TYPE_TO_TENSOR_TYPE[np_arr.dtype]
        dims = np.shape(np_arr)

        tensor_node = helper.make_tensor_value_info(name, data_type, dims)

        initializer.append(
            helper.make_tensor(
                name=name, 
                data_type=data_type,
                dims=dims,
                vals=np_arr.flatten().tolist(),
                raw=False,
            )
        )

        return tensor_node
    else:
        tval_node = helper.make_tensor_value_info(name, kwargs["in_type"], kwargs["in_shape"])
        return tval_node 
开发者ID:NVIDIA,项目名称:mxnet_to_onnx,代码行数:28,代码来源:mx2onnx_converter_functions.py

示例15: tensor_type

# 需要导入模块: from onnx import mapping [as 别名]
# 或者: from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE [as 别名]
def tensor_type(type_str):
    """Return the tensor type from a string descriptor."""
    return mapping.NP_TYPE_TO_TENSOR_TYPE[numpy.dtype(type_str.lower())] 
开发者ID:seetaresearch,项目名称:dragon,代码行数:5,代码来源:helper.py


注:本文中的onnx.mapping.NP_TYPE_TO_TENSOR_TYPE属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。