当前位置: 首页>>代码示例>>Python>>正文


Python TensorProto.INT8属性代码示例

本文整理汇总了Python中onnx.TensorProto.INT8属性的典型用法代码示例。如果您正苦于以下问题:Python TensorProto.INT8属性的具体用法?Python TensorProto.INT8怎么用?Python TensorProto.INT8使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在onnx.TensorProto的用法示例。


在下文中一共展示了TensorProto.INT8属性的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _convert_cast

# 需要导入模块: from onnx import TensorProto [as 别名]
# 或者: from onnx.TensorProto import INT8 [as 别名]
def _convert_cast(builder, node, graph, err):
    '''
    Perform cast operation in CoreML
        e.g. Casting from Float (assumed) to Int maps to Floor Layer
             For Others, add copy layer
    '''
    convert_to = node.attrs.get('to')
    convert_to_int = set({TensorProto.UINT8, TensorProto.INT8, TensorProto.UINT16, TensorProto.INT32,
                          TensorProto.INT64, TensorProto.UINT32, TensorProto.UINT64})

    ## TODO: Add support for conversion from STRING TO FLOAT
    ## Currently, such input will error out in parsing
    if convert_to in convert_to_int:
        builder.add_floor(
            name=node.name,
            input_name=node.inputs[0],
            output_name=node.outputs[0]
        )
    else:
        load_input_constants(builder, node, graph, err)
        builder.add_activation(
            name=node.name,
            non_linearity = 'LINEAR',
            input_name=node.inputs[0],
            output_name=node.outputs[0],
            params=[1.0, 0.0]
        ) 
开发者ID:onnx,项目名称:onnx-coreml,代码行数:29,代码来源:_operators_nd.py

示例2: test_cast

# 需要导入模块: from onnx import TensorProto [as 别名]
# 或者: from onnx.TensorProto import INT8 [as 别名]
def test_cast(self):
    if legacy_onnx_pre_ver(1, 2) or legacy_opset_pre_ver(6):
      test_cases = [("FLOAT", tf.float32), ("UINT8", tf.uint8),
                    ("INT8", tf.int8),
                    ("UINT16", tf.uint16), ("INT16", tf.int16),
                    ("INT32", tf.int32), ("INT64", tf.int64), ("BOOL", tf.bool),
                    ("FLOAT16", tf.float16), ("DOUBLE", tf.float64),
                    ("COMPLEX64", tf.complex64), ("COMPLEX128", tf.complex128)]
    else:
      test_cases = [(TensorProto.FLOAT, tf.float32),
                    (TensorProto.UINT8, tf.uint8), (TensorProto.INT8, tf.int8),
                    (TensorProto.UINT16, tf.uint16),
                    (TensorProto.INT16, tf.int16),
                    (TensorProto.INT32, tf.int32),
                    (TensorProto.INT64, tf.int64), (TensorProto.BOOL, tf.bool),
                    (TensorProto.FLOAT16, tf.float16),
                    (TensorProto.DOUBLE, tf.float64),
                    (TensorProto.COMPLEX64, tf.complex64),
                    (TensorProto.COMPLEX128, tf.complex128)]
      if not legacy_opset_pre_ver(9):
        test_cases.append((TensorProto.STRING, tf.string))
    for ty, tf_type in test_cases:
      node_def = helper.make_node("Cast", ["input"], ["output"], to=ty)
      vector = [2, 3]
      output = run_node(node_def, [vector])
      np.testing.assert_equal(output["output"].dtype, tf_type)

    if not legacy_opset_pre_ver(9):
      test_cases2 = [(TensorProto.FLOAT, tf.float32),
                     (TensorProto.INT32, tf.int32),
                     (TensorProto.INT64, tf.int64),
                     (TensorProto.DOUBLE, tf.float64)]
      for ty, tf_type in test_cases2:
        node_def = helper.make_node("Cast", ["input"], ["output"], to=ty)
        vector = ['2', '3']
        output = run_node(node_def, [vector])
        np.testing.assert_equal(output["output"].dtype, tf_type) 
开发者ID:onnx,项目名称:onnx-tensorflow,代码行数:39,代码来源:test_node.py

示例3: _convert_cast

# 需要导入模块: from onnx import TensorProto [as 别名]
# 或者: from onnx.TensorProto import INT8 [as 别名]
def _convert_cast(builder, node, graph, err):
    """
    Perform cast operation in CoreML
        e.g. Casting from Float (assumed) to Int maps to Floor Layer
             For Others, add copy layer
    """
    convert_to = node.attrs.get("to")
    convert_to_int = set(
        {
            TensorProto.UINT8,
            TensorProto.INT8,
            TensorProto.UINT16,
            TensorProto.INT32,
            TensorProto.INT64,
            TensorProto.UINT32,
            TensorProto.UINT64,
        }
    )

    ## TODO: Add support for conversion from STRING TO FLOAT
    ## Currently, such input will error out in parsing
    if convert_to in convert_to_int:
        builder.add_floor(
            name=node.name, input_name=node.inputs[0], output_name=node.outputs[0]
        )
    else:
        load_input_constants(builder, node, graph, err)
        builder.add_activation(
            name=node.name,
            non_linearity="LINEAR",
            input_name=node.inputs[0],
            output_name=node.outputs[0],
            params=[1.0, 0.0],
        ) 
开发者ID:apple,项目名称:coremltools,代码行数:36,代码来源:_operators_nd.py

示例4: test_all_tensors_f32

# 需要导入模块: from onnx import TensorProto [as 别名]
# 或者: from onnx.TensorProto import INT8 [as 别名]
def test_all_tensors_f32():
    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [2])
    add_param = oh.make_tensor_value_info("add_param", TensorProto.FLOAT, [2])
    mul_param = oh.make_tensor_value_info("mul_param", TensorProto.FLOAT, [2])
    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [2])
    modelproto = oh.make_model(
        oh.make_graph(
            name="test",
            inputs=[top_in],
            outputs=[top_out],
            value_info=[add_param, mul_param],
            nodes=[
                oh.make_node("Add", ["top_in", "add_param"], ["middle"]),
                oh.make_node("Mul", ["middle", "mul_param"], ["top_out"]),
            ],
        )
    )
    model = ModelWrapper(modelproto)
    model = model.transform(InferShapes())
    ret = model.analysis(ta.all_tensors_f32)
    assert ret["all_tensors_f32"] is True

    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [2])
    add_param = oh.make_tensor_value_info("add_param", TensorProto.INT8, [2])
    mul_param = oh.make_tensor_value_info("mul_param", TensorProto.FLOAT, [2])
    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [2])
    modelproto = oh.make_model(
        oh.make_graph(
            name="test",
            inputs=[top_in],
            outputs=[top_out],
            value_info=[add_param, mul_param],
            nodes=[
                oh.make_node("Add", ["top_in", "add_param"], ["middle"]),
                oh.make_node("Mul", ["middle", "mul_param"], ["top_out"]),
            ],
        )
    )
    model = ModelWrapper(modelproto)
    model = model.transform(InferShapes())
    ret = model.analysis(ta.all_tensors_f32)
    assert ret["all_tensors_f32"] is False 
开发者ID:Xilinx,项目名称:finn,代码行数:44,代码来源:test_topology_checks.py


注:本文中的onnx.TensorProto.INT8属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。