当前位置: 首页>>代码示例>>Python>>正文


Python data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS属性代码示例

本文整理汇总了Python中official.recommendation.data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS属性的典型用法代码示例。如果您正苦于以下问题:Python data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS属性的具体用法?Python data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS怎么用?Python data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在official.recommendation.data_preprocessing的用法示例。


在下文中一共展示了data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS属性的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_inputs

# 需要导入模块: from official.recommendation import data_preprocessing [as 别名]
# 或者: from official.recommendation.data_preprocessing import DATASET_TO_NUM_USERS_AND_ITEMS [as 别名]
def get_inputs(params):
  """Returns some parameters used by the model."""
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
    movielens.download(FLAGS.dataset, FLAGS.data_dir)

  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)

  if FLAGS.use_synthetic_data:
    producer = data_pipeline.DummyConstructor()
    num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
        FLAGS.dataset]
    num_train_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
  else:
    num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir, params=params,
        constructor_type=FLAGS.constructor_type,
        deterministic=FLAGS.seed is not None)
    num_train_steps = producer.train_batches_per_epoch
    num_eval_steps = producer.eval_batches_per_epoch

  return num_users, num_items, num_train_steps, num_eval_steps, producer 
开发者ID:IntelAI,项目名称:models,代码行数:25,代码来源:ncf_common.py

示例2: setUp

# 需要导入模块: from official.recommendation import data_preprocessing [as 别名]
# 或者: from official.recommendation.data_preprocessing import DATASET_TO_NUM_USERS_AND_ITEMS [as 别名]
def setUp(self):
    if keras_utils.is_v2_0:
      tf.compat.v1.disable_eager_execution()
    self.temp_data_dir = self.get_temp_dir()
    ratings_folder = os.path.join(self.temp_data_dir, DATASET)
    tf.io.gfile.makedirs(ratings_folder)
    np.random.seed(0)
    raw_user_ids = np.arange(NUM_USERS * 3)
    np.random.shuffle(raw_user_ids)
    raw_user_ids = raw_user_ids[:NUM_USERS]

    raw_item_ids = np.arange(NUM_ITEMS * 3)
    np.random.shuffle(raw_item_ids)
    raw_item_ids = raw_item_ids[:NUM_ITEMS]

    users = np.random.choice(raw_user_ids, NUM_PTS)
    items = np.random.choice(raw_item_ids, NUM_PTS)
    scores = np.random.randint(low=0, high=5, size=NUM_PTS)
    times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)

    self.rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
    self.seen_pairs = set()
    self.holdout = {}
    with tf.io.gfile.GFile(self.rating_file, "w") as f:
      f.write("user_id,item_id,rating,timestamp\n")
      for usr, itm, scr, ts in zip(users, items, scores, times):
        pair = (usr, itm)
        if pair in self.seen_pairs:
          continue
        self.seen_pairs.add(pair)
        if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
          self.holdout[usr] = (ts, itm)

        f.write("{},{},{},{}\n".format(usr, itm, scr, ts))

    movielens.download = mock_download
    movielens.NUM_RATINGS[DATASET] = NUM_PTS
    data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[DATASET] = (NUM_USERS,
                                                                  NUM_ITEMS) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:41,代码来源:data_test.py

示例3: setUp

# 需要导入模块: from official.recommendation import data_preprocessing [as 别名]
# 或者: from official.recommendation.data_preprocessing import DATASET_TO_NUM_USERS_AND_ITEMS [as 别名]
def setUp(self):
    self.temp_data_dir = self.get_temp_dir()
    ratings_folder = os.path.join(self.temp_data_dir, DATASET)
    tf.gfile.MakeDirs(ratings_folder)
    np.random.seed(0)
    raw_user_ids = np.arange(NUM_USERS * 3)
    np.random.shuffle(raw_user_ids)
    raw_user_ids = raw_user_ids[:NUM_USERS]

    raw_item_ids = np.arange(NUM_ITEMS * 3)
    np.random.shuffle(raw_item_ids)
    raw_item_ids = raw_item_ids[:NUM_ITEMS]

    users = np.random.choice(raw_user_ids, NUM_PTS)
    items = np.random.choice(raw_item_ids, NUM_PTS)
    scores = np.random.randint(low=0, high=5, size=NUM_PTS)
    times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)

    self.rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
    self.seen_pairs = set()
    self.holdout = {}
    with tf.gfile.Open(self.rating_file, "w") as f:
      f.write("user_id,item_id,rating,timestamp\n")
      for usr, itm, scr, ts in zip(users, items, scores, times):
        pair = (usr, itm)
        if pair in self.seen_pairs:
          continue
        self.seen_pairs.add(pair)
        if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
          self.holdout[usr] = (ts, itm)

        f.write("{},{},{},{}\n".format(usr, itm, scr, ts))

    movielens.download = mock_download
    movielens.NUM_RATINGS[DATASET] = NUM_PTS
    data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[DATASET] = (NUM_USERS,
                                                                  NUM_ITEMS) 
开发者ID:generalized-iou,项目名称:g-tensorflow-models,代码行数:39,代码来源:data_test.py

示例4: setUp

# 需要导入模块: from official.recommendation import data_preprocessing [as 别名]
# 或者: from official.recommendation.data_preprocessing import DATASET_TO_NUM_USERS_AND_ITEMS [as 别名]
def setUp(self):
    self.temp_data_dir = self.get_temp_dir()
    ratings_folder = os.path.join(self.temp_data_dir, DATASET)
    tf.gfile.MakeDirs(ratings_folder)
    np.random.seed(0)
    raw_user_ids = np.arange(NUM_USERS * 3)
    np.random.shuffle(raw_user_ids)
    raw_user_ids = raw_user_ids[:NUM_USERS]

    raw_item_ids = np.arange(NUM_ITEMS * 3)
    np.random.shuffle(raw_item_ids)
    raw_item_ids = raw_item_ids[:NUM_ITEMS]

    users = np.random.choice(raw_user_ids, NUM_PTS)
    items = np.random.choice(raw_item_ids, NUM_PTS)
    scores = np.random.randint(low=0, high=5, size=NUM_PTS)
    times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)

    rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
    self.seen_pairs = set()
    self.holdout = {}
    with tf.gfile.Open(rating_file, "w") as f:
      f.write("user_id,item_id,rating,timestamp\n")
      for usr, itm, scr, ts in zip(users, items, scores, times):
        pair = (usr, itm)
        if pair in self.seen_pairs:
          continue
        self.seen_pairs.add(pair)
        if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
          self.holdout[usr] = (ts, itm)

        f.write("{},{},{},{}\n".format(usr, itm, scr, ts))

    movielens.download = mock_download
    movielens.NUM_RATINGS[DATASET] = NUM_PTS
    data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[DATASET] = (NUM_USERS,
                                                                  NUM_ITEMS) 
开发者ID:isobar-us,项目名称:multilabel-image-classification-tensorflow,代码行数:39,代码来源:data_test.py


注:本文中的official.recommendation.data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。