本文整理汇总了Python中nvidia.dali.types.INTERP_TRIANGULAR属性的典型用法代码示例。如果您正苦于以下问题:Python types.INTERP_TRIANGULAR属性的具体用法?Python types.INTERP_TRIANGULAR怎么用?Python types.INTERP_TRIANGULAR使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类nvidia.dali.types
的用法示例。
在下文中一共展示了types.INTERP_TRIANGULAR属性的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from nvidia.dali import types [as 别名]
# 或者: from nvidia.dali.types import INTERP_TRIANGULAR [as 别名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, seed=12, local_rank=0, world_size=1,
spos_pre=False):
super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=seed + device_id)
color_space_type = types.BGR if spos_pre else types.RGB
self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True)
self.decode = ops.ImageDecoder(device="mixed", output_type=color_space_type)
self.res = ops.RandomResizedCrop(device="gpu", size=crop,
interp_type=types.INTERP_LINEAR if spos_pre else types.INTERP_TRIANGULAR)
self.twist = ops.ColorTwist(device="gpu")
self.jitter_rng = ops.Uniform(range=[0.6, 1.4])
self.cmnp = ops.CropMirrorNormalize(device="gpu",
output_dtype=types.FLOAT,
output_layout=types.NCHW,
image_type=color_space_type,
mean=0. if spos_pre else [0.485 * 255, 0.456 * 255, 0.406 * 255],
std=1. if spos_pre else [0.229 * 255, 0.224 * 255, 0.225 * 255])
self.coin = ops.CoinFlip(probability=0.5)
示例2: __init__
# 需要导入模块: from nvidia.dali import types [as 别名]
# 或者: from nvidia.dali.types import INTERP_TRIANGULAR [as 别名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, dali_cpu=False):
super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id)
if torch.distributed.is_initialized():
local_rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
else:
local_rank = 0
world_size = 1
self.input = ops.FileReader(
file_root = data_dir,
shard_id = local_rank,
num_shards = world_size,
random_shuffle = True)
if dali_cpu:
dali_device = "cpu"
self.decode = ops.HostDecoderRandomCrop(device=dali_device, output_type=types.RGB,
random_aspect_ratio=[0.75, 4./3.],
random_area=[0.08, 1.0],
num_attempts=100)
else:
dali_device = "gpu"
# This padding sets the size of the internal nvJPEG buffers to be able to handle all images from full-sized ImageNet
# without additional reallocations
self.decode = ops.nvJPEGDecoderRandomCrop(device="mixed", output_type=types.RGB, device_memory_padding=211025920, host_memory_padding=140544512,
random_aspect_ratio=[0.75, 4./3.],
random_area=[0.08, 1.0],
num_attempts=100)
self.res = ops.Resize(device=dali_device, resize_x=crop, resize_y=crop, interp_type=types.INTERP_TRIANGULAR)
self.cmnp = ops.CropMirrorNormalize(device = "gpu",
output_dtype = types.FLOAT,
output_layout = types.NCHW,
crop = (crop, crop),
image_type = types.RGB,
mean = [0.485 * 255,0.456 * 255,0.406 * 255],
std = [0.229 * 255,0.224 * 255,0.225 * 255])
self.coin = ops.CoinFlip(probability = 0.5)
示例3: __init__
# 需要导入模块: from nvidia.dali import types [as 别名]
# 或者: from nvidia.dali.types import INTERP_TRIANGULAR [as 别名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size, local_rank=0, world_size=1):
super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id)
self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size,
random_shuffle=False)
self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
self.res = ops.Resize(device="gpu", resize_shorter=size, interp_type=types.INTERP_TRIANGULAR)
self.cmnp = ops.CropMirrorNormalize(device="gpu",
output_dtype=types.FLOAT,
output_layout=types.NCHW,
crop=(crop, crop),
image_type=types.RGB,
mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
示例4: __init__
# 需要导入模块: from nvidia.dali import types [as 别名]
# 或者: from nvidia.dali.types import INTERP_TRIANGULAR [as 别名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size,
mean, std, local_rank=0, world_size=1, dali_cpu=False, shuffle=False, fp16=False):
# As we're recreating the Pipeline at every epoch, the seed must be -1 (random seed)
super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed=-1)
# Enabling read_ahead slowed down processing ~40%
# Note: initial_fill is for the shuffle buffer. As we only want to see every example once, this is set to 1
self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=shuffle, initial_fill=1)
if dali_cpu:
decode_device = "cpu"
self.dali_device = "cpu"
self.crop = ops.Crop(device="cpu", crop=(crop, crop))
else:
decode_device = "mixed"
self.dali_device = "gpu"
output_dtype = types.FLOAT
if fp16:
output_dtype = types.FLOAT16
self.cmnp = ops.CropMirrorNormalize(device="gpu",
output_dtype=output_dtype,
output_layout=types.NCHW,
crop=(crop, crop),
image_type=types.RGB,
mean=mean,
std=std)
self.decode = ops.ImageDecoder(device=decode_device, output_type=types.RGB)
# Resize to desired size. To match torchvision dataloader, use triangular interpolation
self.res = ops.Resize(device=self.dali_device, resize_shorter=size, interp_type=types.INTERP_TRIANGULAR)